Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Apr 2;6(4):e03656.
doi: 10.1016/j.heliyon.2020.e03656. eCollection 2020 Apr.

Synthesis, pharmacological evaluation and structure-activity relationship of recently discovered enzyme antagonist azoles

Affiliations
Review

Synthesis, pharmacological evaluation and structure-activity relationship of recently discovered enzyme antagonist azoles

Atukuri Dorababu. Heliyon. .

Abstract

Global people are suffering from the legion of diseases. Cytotoxic property of the chemical compound would not solely influence effective drug properties and reduce unnecessary side effects. Proteins/enzymes responsible for microbe proliferation or survival are specifically targeted and inhibited successfully making the cells to undergo apoptosis. Furthermore, isoforms of essential enzymes have distinct physiological functions; thereby inhibition of essential enzyme isoforms is an apt way to the clinical approach of disease neutralization. Drugs are designed so as to play significant roles such as signaling pathways in the oncogenic process including cell proliferation, invasion, and angiogenesis. The present review comprises collective information of the recent synthesis of various organic drug compounds in brief, which could inhibit particular enzyme. The review also covers the correlation of the structure of a drug molecule designed and its inhibitory activity. Also, the most significant enzyme inhibitors are highlighted and structural moieties/core units responsible for remarkable inhibitory values are emphasized.

Keywords: COX; Carbonic anhydrase; Enzyme inhibitors; Natural product chemistry; Organic chemistry; Pyrazole; Thiazole.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
Synthesis of dual c-Met and VEGFR-2 inhibitors [1]; Reagents and conditions: (a) LiOH, MeOH/H2O, rt. 1h; (b) EDC, HOBt, DCM, aniline or substituted aniline; (c) LiOH, MeOH/H2O, rt.; (d) EDC, DMA, substituted or unsubstituted 4-aminophenol; (e) K2CO3, isopropanol.
Figure 1
Figure 1
Structures of most potent dual c-Met and VEGFR-2 inhibitors.
Scheme 2
Scheme 2
Synthetic route for preparation of 1,2,3-1H-triazoles derivatized 4H-pyrano [2,3-d] pyrimidine analogs [2]; Reagents and conditions: (a) Ammonium solution 25%, 25 °C, 3 h, or Cu@MOF-5 (10 mol%), 96% EtOH, 50 °C, 1 h; (b) Acetic anhydride, Conc. H2SO4 (cat.), 15 min, in refluxing, then 25 °C, 24 h; (c) Propargyl bromide, anhydrous potassium carbonate, dry acetone, in refluxing, 4–5 h; (d) Cu@MOF-5 (cat.), 79–80 °C, abs. EtOH, 4–5 h.
Figure 2
Figure 2
Illustration of structures of remarkable MTB PtpB inhibitors.
Scheme 3
Scheme 3
Synthesis of compounds 18a-e [3]; Reagents and conditions: i. absolute ethanol, NaOEt/1-bromoheptane, reflux; ii. 4-X-salicylaldehyde, 160–165 °C, oil bath heating; iii. H3PO2 solution, NaNO2, room temperature; iv. absolute ethanol, NaOEt/ethyl bromoacetate, reflux; v. butanol, NH2NH2・H2O, reflux; vi. ethanol, 4-X-salicylaldehyde, reflux.
Figure 3
Figure 3
Structure of 1,2,4-triazole-5-one derivative with significant CA II inhibitory activity.
Scheme 4
Scheme 4
Synthesis of 1,2,4-triazole-based benzothiazole/benzoxazole derivatives (27a-n) [4]; Reagents and conditions: i) Conc. H2SO4, ethanol; ii) NH2NH2.H2O, Abs. ethanol; iii) 8% w/v NaOH; iv) Anhyd. K2CO3, acetone.
Figure 4
Figure 4
Structures of 1,2,4-triazole derivatized benzothiazoles/benzoxazoles possessing noteworthy p38α MAB kinase inhibitory activities.
Scheme 5
Scheme 5
Synthesis of intermediate compounds 29a-d; Reagents and conditions; i) acetic anhydride, fused sodium acetate (100 °C).
Scheme 6
Scheme 6
Synthetic route for the preparation of final compounds 30a-l [5]; Reagents and conditions; i) glacial acetic acid, fused sodium acetate, water bath (100 °C).
Scheme 7
Scheme 7
Synthesis of target compounds 31a, b and 33a-f [5]; Reagents and reaction conditions: i) glacial acetic acid, fused sodium acetate, water bath, (100 °C); ii) K2CO3, DMF, rt stir (30 min), 5a-c (100 °C).
Figure 5
Figure 5
Structure of significant p38αMAPK inhibitor 30h and p38αMAPK inhibitor/CA dual inhibitor 31a.
Scheme 8
Scheme 8
Synthesis of target compounds 41a, b and 42 [6]; Reagents and conditions: (i) Hydrazine hydrate, EtOH, 60 °C; (ii) glacial AcOH, NaOAc, chloroacetyl chloride, RT; (iii) Benzene, 83 °C; (iv) POCl3, 110 °C; (v) piperazine, MeOH, reflux; (vi) TEA, THF, reflux; (vii) piperazine, TEA, THF, 60 °C.
Scheme 9
Scheme 9
Synthetic route for preparation of final compounds 49 and 51 [6]; Reagents and conditions: i) POCl3, 110 °C; ii) piperazine, MeOH, reflux; iii) TEA, THF, reflux.
Scheme 10
Scheme 10
Synthesis of pyrazolo-pyridine derivatives 5254 [6]; Reagents and conditions: Piperazine analogs, THF, 65 °C.
Scheme 11
Scheme 11
Synthetic route for design of 2,4,5-trisubstituted-1,2,4-triazole-3-one scaffolds [7]; Reagents and conditions: i) absolute ethanol, NaOEt/1-bromoheptane, reflux; ii) H3PO2 solution, NaNO2, room temperature; iii) NaOEt/substituted benzyl bromides.
Scheme 12
Scheme 12
Schematic representation of the design of the target compounds 58a-f and 59a-f [8]; Reagent and reaction conditions: i) CDI, Acetonitrile, r.t. 3 h; ii) CDI, Acetonitrile, r.t. 3 h, then reflux 24 h.
Figure 6
Figure 6
Illustration of the structure of most potent LOX inhibitor (58a) and COX-2 inhibitor (58c).
Scheme 13
Scheme 13
Design and synthesis of multi-tyrosine kinase inhibitors [9]; i) substituted 4-nitrophenol or 4-nitro-1-naphthol, PhCl, reflux; ii) Fe, Conc. HCl, 95% EtOH–H2O, reflux; iii) phenyl carbonchloridate, CH2Cl2, pyridine, rt; iv) 80% NH2NH2·H2O, xylene, 70 °C; v) 2,6-difluorobenzaldehyde, i-PrOH, HOAc, reflux; vi) SiCl4, mercaptoacetic acid, CH2Cl2, reflux.
Scheme 14
Scheme 14
Synthetic route for the preparation of the compounds 66a-c [9]; Reagents and conditions: i) SiCl4, 2-methylmercaptoacetic acid, 3-mercaptopropionic acid or 2, 2-dimethyl-mercapto acetic acid, CH2Cl2, reflux.
Scheme 15
Scheme 15
Synthesis of the thiourea derivative 66d [9]; Reagents and conditions: i) CSCl2, NaHCO3, H2O, rt; ii) 80% NH2NH2·H2O, CH2Cl2, rt; iii) 2,6-difluorobenzaldehyde, i-PrOH, HOAc, reflux; iv) SiCl4, mercaptoacetic acid, CH2Cl2, reflux.
Scheme 16
Scheme 16
Synthesis of compounds 78a-j and 79a-c; Reagents and conditions [9]: i) amine, CH3CN, reflux; ii) POCl3, reflux; iii) 2, 6-difluoro-4-nitrophenol, PhCl, reflux; iv) Fe, Conc. HCl, 95% EtOH–H2O, reflux; v) phenyl carbonochloridate, CH2Cl2, pyridine, rt; vi) 80% NH2NH2·H2O, xylene, 70 °C; vii) 2,6-difluorobenzaldehyde, i-PrOH, HOAc, reflux; viii) SiCl4, mercaptoacetic acid or 3-mercaptopropionic acid, CH2Cl2, reflux.
Figure 7
Figure 7
Structure of potent multi-tyrosine kinase inhibitor.
Scheme 17
Scheme 17
Synthetic route for the preparation of the final compounds 84a-g [10]; Reagents and conditions: i) bromoethylacetate, K2CO3, acetone; ii) NH2NH2•H2O, EtOH, reflux; iii) R-CNS, EtOH, reflux; iv) 2N NaOH/1M NaHCO3.
Figure 8
Figure 8
Structures of the remarkable urease inhibitors.
Scheme 18
Scheme 18
Synthetic pathway for the preparation of the compounds 90 and 91 [11]; Reagents and conditions: i) SOCl2, dry CH2Cl2, rt (10 min), 80 °C (2.5–3h); ii) tBu-NH2, dry CH2Cl2, 80 °C (12h); iii) SO2Cl2, ClCH2CH2Cl, rt (24h); iv) m-CPBA (1.4 eq), CH2Cl2; v) m-CPBA (3.0 eq).
Scheme 19
Scheme 19
Synthetic route for preparation of target 5-arylisothiazole oxide scaffolds; Reagents and conditions: i) Ar-B(OH)2 (2.0 eq), K2CO3 solid, 80 ˚C/GPA: Pd(PPh3)4, THF or GPA: PdCl2(dppf), CH2Cl2, DME, sealed tube; ii) TFA, MW, sealed tube.
Figure 9
Figure 9
Structures of 5-arylisothiazoles as most significant CA IX and XII inhibitors.
Figure 10
Figure 10
Structure of potent lanosterol-14α-demethylase inhibitor.
Scheme 20
Scheme 20
Illustration of synthetic route for preparation of compounds 101a-b [13]; Reagents and conditions: i) benzyl bromide, DMF, reflux (2h); ii) NH2NH2, rt (15 min); iii) CS2, KOH, EtOH, reflux (6h); iv) benzyl bromide and or ethyl iodide, EtOH, KOH, rt (2h); v) EtOH, CS2, KOH, rt (14h); vi) NH2NH2, reflux (1h); vii) Ar-CHO, AcOH, reflux (20min).
Scheme 21
Scheme 21
Representation of design of compounds 107 and 108 [13]; Reagents and conditions: i) Isopropyl iodide, DMF, reflux, (2h); ii) NH2NH2, rt (2h); iii) benzoylacetoacetate and/or benzoyl acetone, EtOH, AcOH, reflux (12h).
Scheme 22
Scheme 22
Synthesis of the final compounds 111 and 112a-c [13]; Reagents and conditions: i) diethyl 2-bromomalonate, DMF, reflux (2h); ii) NH2NH2, rt (20min); iii) benzoyl acetone, EtOH, AcOH, reflux (12h); iv) Ar-CHO, EtOH, AcOH, reflux (2h).
Figure 11
Figure 11
Structure of compound 112a possessing COX-1 inhibitory.
Scheme 23
Scheme 23
Preparation of target compounds 114a-j and 115a-j [14].
Scheme 24
Scheme 24
Synthetic route for the preparation of the compounds 117a-b and 118a-b [14].
Scheme 25
Scheme 25
Schematic representation of compounds 119a-g and 120a-g [14].
Figure 12
Figure 12
Structures of potent CA inhibitors.
Scheme 26
Scheme 26
Illustration of the structures of carbazole and hydrazone-bridged thiazole-pyrazole derivatives [18].
Scheme 27
Scheme 27
Synthesis of carbazole-imidazole derivatives 127a-w [19]; Conditions and reagents: i) TFA (70%), CHCl3, 50 °C (1h); Ar'CHO, NH4OAc, 80 °C (8h).
Figure 13
Figure 13
Representation of carbazole-imidazole derivatives as potent α-glucosidase inhibitors.
Scheme 28
Scheme 28
Synthesis of the target molecules 132a-t [20]; Reagents and conditions: i) Conc. H2SO4, 0–10 °C (2–3h); ii) ethyl bromoacetate, K2CO3, acetone, reflux (6h); iii) NH2NH2•H2O, THF, reflux (4h); iv) CS2, NaOH, EtOH, reflux (12h); v) R-X, K2CO3, acetone, reflux (3–5h).
Figure 14
Figure 14
Structures of remarkable CA XII inhibitors.
Scheme 29
Scheme 29
Synthetic route for the synthesis of the derivatives 135a-c and 137a-c [21]; Reagents and conditions: i) Arylthioamides, dry DMF, 140 °C; ii) 1M NaOMe, MeOH, rt; iii) Carboxamidines, 4 Eq. K2CO3, THF-H2O (4:1), rt.
Scheme 30
Scheme 30
Synthesis of the glucopyranosyl azole derivative 140 [21]; Reagents and conditions: i) 4 Eq. K2CO3, THF-H2O (4:1), rt; ii) 40 Eq. EtSH, 20 Eq. BF3.Et2O, dry CH2Cl2, rt.
Figure 15
Figure 15
Structures of remarkable GPase inhibitors.
Scheme 31
Scheme 31
Synthesis of the diarylpyrazoles 155a-v [22]; Reagents and conditions: i) dimethyl oxalate, MeOH, reflux (6h); ii) 4-hydrazonyl benzenesulfonamide, MeOH, reflux (6H); iii) KOH, MeOH, reflux (2h); iv) EDC•HCl, HOBt, DMAP, CH2Cl2, 0 °C, Revitalite, 0.5h.
Scheme 32
Scheme 32
Synthetic route for preparation of final compounds 147a-s [22]; Reagents and conditions: i) EDC•HCl, HOBt, DMAP, CH2Cl2, 0 °C, Revitalite, 0.5h, RT, overnight.
Figure 16
Figure 16
Structures of pyrazole benzenesulfonamides as COX-2 and 5-LOX inhibitors.
Scheme 33
Scheme 33
Synthetic route for preparation of final compounds 155a-x [23]; Reagents and conditions: i) 4-methoxy-benzenemethanol, p-Toluenesulfonic acid, acetonitrile, 60 °C (8h); ii) Potassium cyanate, AcOH, H2O, 60 °C (5h); iii) Xylene, reflux (8h); iv) Cyclopropylacetylene, n-BuLi, tetrahydrofuran, -50 °C (1h); v) ceric ammonium nitrate, acetonitrile, H2O, rt (4h); vi) POCl3, reflux (9h); vii) ArNH2, n-BuOH, reflux (5–8h).
Figure 17
Figure 17
Illustration of the structure of potent RTase inhibitor.
Scheme 34
Scheme 34
Synthesis of quinazoline derivatives 168a-l [24]; Reagents and conditions: i) CH3I, KHCO3, DMF, overnight, rt; ii) BnCl, K2CO3, KI, 60 °C; iii) AcOH/HCl, 45 °C (8h); iv) CH2Br2, K2CO3, DMF, 70 °C; v) Pd/C, H2, EtOH, rt; vi) R1X, K2CO3, DMF, 70 °C; vii) HNO3/AcOH, 0 °C; viii) Pd/C, H2, EtOH; ix) formamidine acetate, EtOH, reflux; xi) POCl3, reflux; xii) triphosgene, THF, triethylamine, 0 °C; xii) K2CO3, isopropanol, reflux.
Figure 18
Figure 18
Demonstration of the structure of compound 168j as potent VEGFR-2 inhibitor.
Scheme 35
Scheme 35
Synthetic route for the preparation of compounds 174a-p and 175 [25]; i) NaN3, DMF, rt (12h); ii) L-sodium ascorbate, copper sulfate pentahydrate, EtOH, H2O, rt; iii) dioxane, H2O, pd(pddf)Cl2, K2CO3, reflux; iv) 0 °C, CH2Cl2, triethylamine, 30min, cyclopropyl carbonyl chloride, rt.
Figure 19
Figure 19
Structures of potent tyrosine kinase inhibitors.
Scheme 36
Scheme 36
Synthetic route for the preparation of hydroxyazole derivatives [26]; Reagents and conditions: i) H2, Pd/C, dry THF; ii) 2,2-diphenylethanamine, 60 °C; iii) a) NaH, MeOH; b) 2M H2SO4; iv) benzylamine, 60 °C; v) HBTU, 4-(dimethylamino)pyridine (DMAP), 2,2-diphenylethanamine, dry DMF.
Scheme 37
Scheme 37
Synthesis of the derivatives 188a-f [26]; Reagents and conditions: i) Cs2CO3, BOC anhydride, dry THF, reflux; ii) NBS, benzoyl peroxide, dichloroethane, reflux; iii) R-(Ph)-XH, Cs2CO3, dry DMF; iv) TFA, DCM; v) 5M NaOH, EtOH.
Scheme 38
Scheme 38
Preparation of the final compounds 192a-c and 194 [26]; Reagents and conditions: i) R1X, K2CO3, acetonitrile; ii) 5M NaOH, EtOH; iii) a) oxalyl chloride, dry DMF, dry THF, 0 °C; b) aq NH3, THF; iv) H2, Pd/C, dry THF.
Figure 20
Figure 20
Structure of compound 190e possessing efficient pfDHODH inhibitory activity.
Scheme 39
Scheme 39
Synthetic route for the preparation of thiazole derivatives 199a-z and 200a-d [27]; Reagents and conditions: i) PdCl2(PPh3)2, ethylnyltrimethylsilane (2 Equiv), 50 °C (24h); ii) iii) PdCl2(PPh3)2 (5% mol), CuI (7.5% mol), Et3N for 6–24h; iv) aminoguanidine HCl, EtOH.
Figure 21
Figure 21
Demonstration of structures of most significant inhibitors.
Scheme 40
Scheme 40
Strategic design and synthesis of the pyrazole-benzenesulfonamide derivatives [28]; Reagents and conditions: i) Chloroalkanecarbonyl chloride, DMF, rt (24h); ii) Morpholine, anhyd. K2CO3, DMF, 80 °C (16 h); iii) Acetyl chloride or benzoyl chloride, pyridine, 80 °C, (24h); iv) Aromatic aldehyde, glacial acetic acid, reflux (8–24h).
Figure 22
Figure 22
Structures of most potent COX inhibitors.
Scheme 41
Scheme 41
Synthesis of phthalimide-triazoles as COX inhibitors [29]; Reagents and conditions: i) K2CO3, DMF, 80 °C (2h); ii) NaN3, H2O/t-BuOH, NEt3; ii) intermediates 209a-m, CuI.
Figure 23
Figure 23
Structures of remarkable tyrosinase inhibitors.
Scheme 42
Scheme 42
Design and synthesis of the compounds 212a-d [30]; Reagents and conditions: i) 4-substituted C6H5COCH3; ii) POCl3/DMF.
Scheme 43
Scheme 43
Synthetic route for the preparation of the compounds 214a-d and 215a-d [30]; Reagents and conditions: i) Dry dioxane, piperidine (catalyst) ii) Dry dioxane, CH3COONH4 (catalyst).
Scheme 44
Scheme 44
Synthesis of the purine-pyrazolothiazoles 216a-h and 217a-h [30]; Reagents and conditions: i) N-substituted thiosemicarbazide, dry dioxane, glacial acetic acid (catalyst), reflux; ii) dry dioxane, anhyd. CH3COONa, reflux; iii) dry dioxane, anhyd. CH3COONa, reflux.
Figure 24
Figure 24
Demonstration of the structure of significant 15-LOX inhibitor.
Scheme 45
Scheme 45
Strategic design and synthesis of final compounds 221a-g and 222a-c [31]; Reagents and conditions: i) Na, CH3OH, phenyl isothiocyanate, reflux 1/2 h, cool; ii) Hydrazine hydrate, reflux 1 h; iii) Aryl amine, triethyl orthoformate, DMSO, Oil Bath, 2.5–4.5 h, iv) Aromatic aldehyde, sodium acetate, AcOH, reflux 6 h.
Scheme 46
Scheme 46
Synthesis of the pyrazolopyrimidines 226a-d [31]; Reagents and conditions: i) KOH, DMF, phenyl isothiocyanate, stirring, RT, 24 h; ii) Dimethyl sulfate, stirring, RT, 8 h, iii) Hydrazine hydrate, 3–4 h, iv) Hydrochloric acid, aromatic aldehyde, ethyl acetoacetate, ethanol, reflux, 4–8 h.
Scheme 47
Scheme 47
Synthetic design and preparation of final compounds 229a-e [31]; Reagents and conditions: i) KOH, DMF, phenyl isothiocyanate, stirring, RT, 24 h; ii) Dimethyl sulfate, stirring, RT, 8 h, iii) Hydrazine hydrate, 3–4 h, iv) Hydrochloric acid, aromatic aldehyde, ethyl acetoacetate, ethanol, reflux, 4–8 h.
Figure 25
Figure 25
Structure of most promising CDK2 inhibitor.
Scheme 48
Scheme 48
Design and synthesis of the target compounds 233a-o [32]; Reagents and conditions: i) stirring at room temperature ii) substituted aromatic aldehydes, malononitrile, piperidine, 2 h iii) substituted aromatic aldehydes, EtOH, AcOH, 3 h, Reflux.
Figure 26
Figure 26
Illustration of structures of molecules with remarkable COX-1 inhibitory activity.
Scheme 49
Scheme 49
Design and synthesis of fused pyrazole scaffolds [33]; Reagents and conditions: i) SOCl2, reflux (5h); ii) NH3, xylene, reflux (5h); iii) SOCl2+DMF, rt (10h); iv) NH2NH2, reflux (5h); vi) NH2NH2, toluene, reflux (5h); vii) SOCl2+DMF, rt (12h); viii) R1NH2, reflux (48h).
Figure 27
Figure 27
Illustration of structures of molecules possessing hCA and AChE inhibitory activities.
Scheme 50
Scheme 50
Synthetic route for the design of preparation of compounds 245aa-ad [34]; Reagents and conditions: i) Methanol, 2-naphthol, 2-aminobenzothiazole reflux (5h).
Figure 28
Figure 28
Demonstration of significant topoisomerase I inhibitors.
Scheme 51
Scheme 51
Synthesis of final compounds 248a-f [35]; Conditions and reagents: i) HCl/H2O, reflux (3h); ii) substituted benzene diazonium chlorides, EtOH, CH3COONa.
Scheme 52
Scheme 52
Synthetic route for the preparation of the molecules 249a-l [35]; Reagents and conditions: i) HCHO/EtOH, stirring, 60 °C (6h).
Scheme 53
Scheme 53
Design and synthesis of the pyrazole derivatives 250a-f [35]; Reagents and conditions: i) CH3COONH4, EtOH, reflux (15h).
Figure 29
Figure 29
Demonstration of structures of excellent COX-2 inhibitors.
Scheme 54
Scheme 54
Preparation of pyrazole-thiophene derivatives [36]; Reagents and conditions: i) NH2NH2.H2O, EtOH, reflux (5h); ii) EtOCH=C(COOEt)2, Anhyd.K2CO3, EtOH, reflux (6h); iii) EtOCH=C(CN)COOEt, Anhyd.K2CO3, EtOH, reflux (6h); iv) EtOH, reflux (12h); v) CH3COCH2COCH3, EtOH, reflux (10h).
Scheme 55
Scheme 55
Synthesis of fused thiophene-pyrimidine incorporated pyrazole derivatives [36]; Reagents and conditions: i) NH2NH2.H2O, reflux (1h); ii) EtOCH=C(CN)2, Anhyd.K2CO3, EtOH, reflux (6h); iii) EtOCH=C(CN)COOEt, Anhyd.K2CO3, EtOH, reflux (6h); iv) EtOCH=C(COOEt)2, Anhyd.K2CO3, EtOH, reflux (12h); v) CH3COCH2COCH3, EtOH, reflux (10h); vi) EtOH, reflux (6h); vii) Anhyd. CH3COONa, Br2 in AcOH, stir (overnight).
Figure 30
Figure 30
Structures of remarkable COX-2 inhibitors.
Scheme 56
Scheme 56
Synthesis of dihydropyrazole-benzenesulfonamide derivatives [37]; Reagents and conditions: i) EtOH, aq. NaOH (20%), rt. ii) p-hydrazinobenzene sulfonamide hydrochloride, EtOH, glacial acetic acid, reflux (4–19h).
Figure 31
Figure 31
Structures of remarkable hCA inhibitors.
Scheme 57
Scheme 57
Synthetic pathway for preparation of compounds 275a-b [38]; Reagents and reaction conditions: i) phenylhydrazine hydrochloric (R = H) and p-methane sulfonyl hydrochloride (R = SO2CH3), sodium acetate, 95% ethanol, reflux (5h); ii) formic acid (85%), reflux (10h); iii) POCl3, DMF, reflux (4h); iv) glycine ethyl ester hydrochloride, TEA, absolute ethanol, reflux (5–6h); v) hydrazine hydrate, EtOH, reflux (10h).
Scheme 58
Scheme 58
Synthesis of the pyrazolo-pyrimidine derivatives [38]; Reagents and conditions: i) appropriate aldehyde, absolute EtOH, gl. Acetic acid, reflux (4h); ii) ethyl isothiocyanate, absolute ethanol, TEA, reflux (3h); iii) appropriate phenyl or 4-substituted phenyl isothiocyanate, absolute ethanol, TEA, reflux (3h).
Scheme 59
Scheme 59
Preparation of target molecules 279a, b and 280a, b [38]; Reagents and conditions: i) CS2, KOH, absolute ethanol, reflux (3h); ii) ethyl acetoacetate, absolute ethanol, reflux (10h).
Scheme 60
Scheme 60
Synthesis of the target molecules 284a-n [39]; Reagents and conditions: i) AcOH, EtOH, 70 °C; ii) a. DMF, POCl3, 0→70 °C (3h); b. aq NaOH/aq NaHCO3; iii) DCM/MeOH (8:1), EDA (0.2 mmol), AcOH (2 mM).
Figure 32
Figure 32
Representation of structures of potent alkaline phosphatase/nucleotide pyrophosphatase inhibitors.
Scheme 61
Scheme 61
Preparation of the compounds 292a-b [40]; Reagents and conditions: i) NaH, 4-methoxybenzyl chloride, DMF, 0 °C, rt, (18h); ii) NaHMDS, ethyl 4-fluorobenzoate, THF, 0 °C, rt, (2h); iii) NaNO2, AcOH, rt, (1h); iv) H2, Pd/C, methanolic HCl, 45 °C, (6h); v) KSCN, DMF, 160 °C (2h); vi) CH3I, NaOtBu, MeOH, 55 °C (2h); (in case of preparation of 292a) or benzyl bromide, Cs2CO3, DMF, rt (36h) (in case of preparation of 292b); vii) TFA, 45 °C.
Scheme 62
Scheme 62
Synthetic route for preparation of compounds 295a-u [40]; Reagents and conditions: i) carboxylic acid, PyBOP, DIPEA, DCM, rt; ii) carboxylic acid, HATU, DIPEA, DCM, rt; iii) acyl chloride, pyridine, 0 °C, rt; iv) amide, Pd2(dba)3, XantPhos, Cs2CO3, DMF, 100 °C (16h); v) H2O2, MeCN, rt.
Scheme 63
Scheme 63
Design and synthesis of compound 299 and 300 [40]; Reagents and conditions: i) cyclopropanecarbonyl chloride, pyridine, 0 °C, rt (2h); ii) cyclopropanecarboxamide, Pd2(dba)3, XantPhos, Cs2CO3, DMF, 100 °C (16h).
Scheme 64
Scheme 64
Preparation of the compounds 305a-g [40]; Reagents and conditions: i) SeO2, acetic acid, 130 °C, 1.5h; ii) TFA, rt; iii) cyclopropanecarbonyl chloride, DIPEA, DCM, rt (18h); iv) R-CHO, NH4OAc, acetic acid, 130 °C (3–4h).
Scheme 65
Scheme 65
Synthetic route for the preparation of pyridineimidazole derivative 310 [40]; Reagents and conditions: NaH, 2-(trimethylsilyl)ethoxymethyl chloride, THF, 0 °C, rt (18h); ii) n-butyllithium, tributyltin chloride, Et2O, 0 °C, rt (2h); iii) N-(4-bromopyridin-2-yl)cyclopropanecarboxamide, Pd(PPh3)4, 1,4-dioxane, 105 °C (18h); iv) TFA, DCM, rt (6h).
Figure 33
Figure 33
Illustration of structures of noteworthy GSK3β/p38α MAP kinase inhibitors.
Scheme 66
Scheme 66
Design and synthesis of quinazolinone moiety linked to thiadiazole derivatives [41]; Reagents and conditions: i) BrCH2COOC2H5, K2CO3, acetone; ii) NH2NH2•H2O, EtOH; iii) C2H5NCS, EtOH, reflux; iv) 1M NaHCO3, reflux; v) dil. H2SO4.
Scheme 67
Scheme 67
Synthesis of compound quinoline derivative 319 [42]; Reagents and conditions: i) NaOH, CH3COC6H4CH3, RT (4h); ii) gl. AcOH, reflux (10h).
Scheme 68
Scheme 68
Synthetic pathway for the design of the quinoline-dihydropyrazole analogs [42]; Reagents and conditions: i) NH2NHC=XNH2, NaOH, EtOH, reflux (12h); ii) NH2NH2•H2O, AcOH, reflux (20h).
Scheme 69
Scheme 69
Synthetic route for the design of the pyrazole-thiazole linked quinolones [42]; Reagents and conditions: i) substituted phenacyl bromide, EtOH, reflux (4h); ii) appropriate 3-chloropentane-2,4-diones, EtOH, reflux (4h); iii) appropriate 2-oxo-N-arylpropanehydrazonyl chloride, EtOH, reflux (4h).
Figure 34
Figure 34
Structure of potent EGFR inhibitor.
Scheme 70
Scheme 70
Preparation of benzo[d]imidazole-quinoline derivatives [43]; Reagents and conditions: i) N-phenyl-bis(trifluoromethanesulfonimide), rt (2d); ii) tris(dibenzylideneacetone) dipalladium(0), cesium carbonate, rac-BINAP, reflux (3d); iii) TFA.
Scheme 71
Scheme 71
Synthetic route for the preparation of compounds 327a-b [43]; Reagents and conditions: i) R-OMs, Cesium carbonate, reflux, overnight; ii) TFA.
Scheme 72
Scheme 72
Synthesis of radioiodinated compound [125I] 333 [43]; Reagents and conditions: i) NCS, NaI, 50 °C, overnight ii) Boc2O, TEA, rt (3d) iii) hexabutyldistannane, Pd[P(C6H5)3]4, reflux (24h) iv) [125I]NaI, NCS, acetic acid, rt (15min) v) TFA, rt (30min).
Scheme 73
Scheme 73
Synthetic pathway for preparation of radioiodinated compound 336 [43]; Reagents and conditions: i) i) NCS, NaI, 50 °C, overnight ii) hexabutyldistannane, Pd[P(C6H5)3]4, reflux (48h) iii) [125I]NaI, NCS, acetic acid, rt (15min).
Figure 35
Figure 35
Representation of structures of molecules with strong PDGFRβ affinity.
Scheme 74
Scheme 74
Synthetic way for the preparation of the thiazolo-benzene sulfonamides [44]; Reagents and conditions: i) SOCl2, reflux (12hr); ii) NaN3/Ice bath/stirring (2hr); iii) Dry toluene/reflux (1hr); iv) Dry toluene/reflux (4hr).
Scheme 75
Scheme 75
Synthesis of the final compounds 346a-d and 347a-d [44]; Reagents and conditions: i) SOCl2/DMF, reflux (5hr); ii) NaN3/Ice bath/stirring (2hr); iii) Dry toluene/reflux (1hr); iv) Dry toluene/reflux (4hr).
Figure 36
Figure 36
Representation of significant CA inhibitory molecules.
Scheme 76
Scheme 76
Solid-phase synthesis of tetrazole-peptidomimetics by Ugi-azide reaction [45].
Figure 37
Figure 37
Demonstration of structures of significant ePepN inhibitors.
Scheme 77
Scheme 77
Synthetic route for the preparation of the compounds 354a-j [46]; Reagents and conditions: i) NH2CSNHNH2, EtOH, reflux (12h); ii) RCOCH2Br, EtOH, reflux (6h).
Figure 38
Figure 38
Illustration of structures of potent Akt inhibitors.
Scheme 78
Scheme 78
Synthetic route for the preparation of thiazol-hydrazolo-coumarin derivatives [47]; Reagents and conditions: i) EtOH, Anhyd. CH3COONa, CH3COCH2Cl, reflux; ii) EtOH, Anhyd. CH3COONa, Phenacyl bromide, reflux; iii) EtOH, Anhyd. CH3COONa, 4-Bromo phenacyl bromide, reflux; iv) EtOH, Anhyd. CH3COONa, 2-bromoacetyltetralin, reflux; v) EtOH, Anhyd. CH3COONa, 3-chloroacetylacetone, reflux; vi) EtOH, Anhyd. CH3COONa, ethyl-2-chloroacetoacetate, reflux; vii) EtOH, Anhyd. CH3COONa, ethyl bromoacetate, reflux.
Figure 39
Figure 39
Demonstration of potent anti-proliferative (Hela) and anti-CDK2 inhibitory compound.
Scheme 79
Scheme 79
Synthesis of a series of thiazolidine-2,4-dione-azole derivatives [48]; Reagents and conditions: i) H2O, Conc. HCl, reflux (10h); ii) K2CO3, DMF, 100 °C (5h); iii) piperidine, PhCOOH, 100 °C (1h).
Scheme 80
Scheme 80
Synthetic route for the design of pyrrolo-pyridine derivatives [48]; Reagents and conditions: i) Bromoethylacetoacetate, K2CO3, DMF, 100 °C (30 min); ii) HCl/CH3COOH; iii) Pd(dba)3 Xanthophos, CsCO3, dioxane, 100 °C (1h).
Figure 40
Figure 40
Structures of thiazolidine-2,-4-dione-azole derivatives with significant α-amylase & α-glucosidase inhibitory percentages.
Scheme 81
Scheme 81
Preparation of final compounds 375a & b, 376a & b and 377a & b [49]; Reagents and conditions: i) NH2CSNHNH2, EtOH, HCl, reflux; ii) CH3COCH2Cl, CH3COONa, EtOH, reflux; iii) PhCOCH2Br, CH3COONa, EtOH, reflux; iv) CH3COCH(Cl)COOC2H5, CH3COONa, EtOH, reflux.
Scheme 82
Scheme 82
Synthetic route for the design of the compounds 378a & b and 379a & b [49]; Reagents and conditions: i) BrCH2COOC2H5, CH3COONa, EtOH, reflux; ii) CH3CH(Br)COOC2H5, CH3COONa, EtOH, reflux.
Scheme 83
Scheme 83
Synthesis of the compounds 380a,b [49]; Reagents and conditions: i) CH3CO(Cl)C=NNHAr, Dioxane, Et3N, reflux.
Scheme 84
Scheme 84
Design and preparation of compounds 381a, b [49]: Reagents and conditions: i) ArN2Cl, EtOH, CH3COONa•3H2O.
Figure 41
Figure 41
Demonstration of structures of potent molecules with anti-proliferation/VEGFR-2 activity.
Figure 42
Figure 42
Structures of tropinone derivatives having anticancer properties.
Scheme 85
Scheme 85
Design and synthesis of tropinone derivatives 386a-h [50]; Reagents and conditions: i) H2NNHCSNH2, AcOH, EtOH, reflux (20h); ii) p-substituted phenacyl bromide EtOH, reflux (20h); iii) H2NNHCSNH2, p-substituted phenacyl bromide EtOH, reflux.
Figure 43
Figure 43
Illustration of tropinone-thiazole derivatives as potent tyrosinase inhibitors.

Similar articles

Cited by

References

    1. Wei D., Fan H., n Zheng K., Qin X., Yang L., Yang Y., e Duan Y., Zhang Q., Zeng C., Hu L. Synthesis and anti-tumor activity of [1,4] dioxino [2,3-f] quinazoline derivatives as dual inhibitors of c-met and VEGFR-2. Bioorg. Inside Chem. 2019;88:10291. - PubMed
    1. Thanh N.D., Hai D.S., Ha N.T.T., Tung D.T., Le C.T., Van H.T.K., Toan V.N., Toan D.N., Dang L.H. Synthesis, biological evaluation and molecular docking study of 1,2,3-1Htriazoles having 4H-pyrano[2,3-d]pyrimidine as potential Mycobacterium tuberculosis protein tyrosine phosphatase B inhibitors. Bioorg. Med. Chem. Lett. 2019;29:164–171. - PubMed
    1. Akin Safak, Ayaloglu Hasan, Gultekin Ergun, Colak Ahmet, Bekircan Olcay, Yildirim Akatin Melike. Synthesis of 1,2,4-triazole-5-on derivatives and determination of carbonic anhydrase II isoenzyme inhibition effects. Bioorg. Chem. 2019;83:170–179. - PubMed
    1. Tariq S., Kamboj P., Alam O., Amir M. 1,2,4-Triazole-Based benzothiazole/benzoxazole derivatives: design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg. Chem. 2018;81:630–641. - PubMed
    1. Georgey H.H., Manhi F.M., Mahmoud W.R., Mohamed N.A., Berrino E., Supuran C.T. 1,2,4-Trisubstituted imidazolinones with dual carbonic anhydrase and p38 mitogen-activated protein kinase inhibitory activity. Bioorg. Chem. 2019;82:109–116. - PubMed

LinkOut - more resources