Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 6;12(18):20295-20306.
doi: 10.1021/acsami.0c05096. Epub 2020 Apr 21.

3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs

Affiliations

3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs

Dong Nyoung Heo et al. ACS Appl Mater Interfaces. .

Abstract

Extrusion-based bioprinting of hydrogels in a granular secondary gel enables the fabrication of cell-laden three-dimensional (3D) constructs in an anatomically accurate manner, which is challenging using conventional extrusion-based bioprinting processes. In this study, carbohydrazide-modified gelatin (Gel-CDH) was synthesized and deposited into a new multifunctional support bath consisting of gelatin microparticles suspended in an oxidized alginate (OAlg) solution. During extrusion, Gel-CDH and OAlg were rapidly cross-linked because of the Schiff base formation between aldehyde groups of OAlg and amino groups of Gel-CDH, which has not been demonstrated in the domain of 3D bioprinting before. Rheological results indicated that hydrogels with lower OAlg to Gel-CDH ratios possessed superior mechanical rigidity. Different 3D geometrically intricate constructs were successfully created upon the determination of optimal bioprinting parameters. Human mesenchymal stem cells and human umbilical vein endothelial cells were also bioprinted at physiologically relevant cell densities. The presented study has offered a novel strategy for bioprinting of natural polymer-based hydrogels into 3D complex-shaped biomimetic constructs, which eliminated the need for cytotoxic supplements as external cross-linkers or additional cross-linking processes, therefore expanding the availability of bioinks.

Keywords: 3D bioprinting; carbohydrazide-modified gelatin; extrusion-based bioprinting; granular slurry; oxidized alginate.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources