Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr:72:142-151.
doi: 10.1016/j.ejmp.2020.03.018. Epub 2020 Apr 7.

Bridging the gap between micro- and macro-scales in medical imaging with textural analysis - A biological basis for CT radiomics classifiers?

Affiliations

Bridging the gap between micro- and macro-scales in medical imaging with textural analysis - A biological basis for CT radiomics classifiers?

C Geady et al. Phys Med. 2020 Apr.

Abstract

Introduction: Studies suggest there is utility in computed tomography (CT) radiomics for pancreatic disease; however, the precise biological interpretation of its features is unclear. In this manuscript, we present a novel approach towards this interpretation by investigating sub-micron tissue structure using digital pathology.

Methods: A classification-to attenuation (CAT) function was developed and applied to digital pathology images to create sub-micron linear attenuation maps. From these maps, grey level co-occurrence matrix (GLCM) features were extracted and compared to pathology features. To simulate the spatial frequency loss in a CT scanner, the attenuation maps were convolved with a point spread function (PSF) and subsequently down-sampled. GLCM features were extracted from these down-sampled maps to assess feature stability as a function of spatial frequency loss.

Results: Two GLCM features were shown to be strongly and positively correlated (r = 0.8) with underlying characteristics of the tumor microenvironment, namely percent pimonidazole staining in the tumor. All features underwent marked change as a function of spatial frequency loss; progressively larger spatial frequency losses resulted in progressively larger inter-tumor standard deviations; two GLCM features exhibited stability up to a 100 µm pixel size.

Conclusion: This work represents a necessary step towards understanding the biological significance of radiomics. Our preliminary results suggest that cellular metrics of pimonidazole-detectable hypoxia correlate with sub-micron attenuation coefficient texture; however, the consistency of these textures in face of spatial frequency loss is detrimental for robust radiomics. Further study in larger data sets may elucidate additional, potentially more robust features of biologic and clinical relevance.

Keywords: Feature stability; Grey-level co-occurrence; Hypoxia; Image processing; Pancreatic cancer; Pathology; Personalized medicine; Quantitative imaging; Radiomics; Texture.

PubMed Disclaimer

MeSH terms