Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Apr 10;13(1):35.
doi: 10.1186/s13045-020-00872-8.

m6A-binding proteins: the emerging crucial performers in epigenetics

Affiliations
Review

m6A-binding proteins: the emerging crucial performers in epigenetics

Yanchun Zhao et al. J Hematol Oncol. .

Abstract

N6-methyladenosine (m6A) is a well-known post-transcriptional modification that is the most common type of methylation in eukaryotic mRNAs. The regulation of m6A is dynamic and reversible, which is erected by m6A methyltransferases ("writers") and removed by m6A demethylases ("erasers"). Notably, the effects on targeted mRNAs resulted by m6A predominantly depend on the functions of different m6A-binding proteins ("readers") including YT521-B homology (YTH) domain family, heterogeneous nuclear ribonucleoproteins (HNRNPs), and insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs). Indeed, m6A readers not only participate in multiple procedures of RNA metabolism, but also are involved in a variety of biological processes. In this review, we summarized the specific functions and underlying mechanisms of m6A-binding proteins in tumorigenesis, hematopoiesis, virus replication, immune response, and adipogenesis.

Keywords: Adipogenesis; Cancer; Immunity; N6-methyladenosine; Virus; m6A-binding proteins.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Domain architectures of m6A-binding proteins
Fig. 2.
Fig. 2.
The regulation of m6A modification. m6A is established by m6A methyltransferases (“writers”) and removed by m6A demethylases (“erasers”). m6A readers are involved in multiple procedures of RNA metabolism through recognizing and binding to the m6A sites of RNAs. (a) HNRNPC plays an important role in the pre-mRNAs processing and structure switching. (b) HNRNPG modulates alternative splicing and structure switching. (c) HNRNPA2B1 accelerates primary miRNAs processing, alternative splicing, and structure switching. (d) YTHDC1 participates in the alternative splicing, nuclear export, and X chromosome silencing. (e) IGF2BP1/2/3 have a function to increase the stability of targeted mRNAs. (f) YTHDC2 promotes mRNAs translation. (g) YTHDF1 augments mRNAs translation. (h) YTHDF2 facilitates mRNAs decay. (i) YTHDF3 cooperates with YTHDF1 to increase mRNAs translation, and strengthens mRNAs decay mediated by YTHDF2

References

    1. Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–398. doi: 10.1038/nature05913. - DOI - PubMed
    1. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–3975. doi: 10.1073/pnas.71.10.3971. - DOI - PMC - PubMed
    1. Perry RP, Kelley DE. Existence of methylated messenger RNA in mouse L cells. Cell. 1974;1(1):37–42. doi: 10.1016/0092-8674(74)90153-6. - DOI
    1. Wei CM, Gershowitz A, Moss B. Methylated nucleotides block 5’ terminus of HeLa cell messenger RNA. Cell. 1975;4(4):379–386. doi: 10.1016/0092-8674(75)90158-0. - DOI - PubMed
    1. Wei CM, Moss B. Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry. 1977;16(8):1672–1676. doi: 10.1021/bi00627a023. - DOI - PubMed

LinkOut - more resources