Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun:111:110785.
doi: 10.1016/j.msec.2020.110785. Epub 2020 Feb 27.

miR-21 promotes osseointegration and mineralization through enhancing both osteogenic and osteoclastic expression

Affiliations

miR-21 promotes osseointegration and mineralization through enhancing both osteogenic and osteoclastic expression

Zhen Geng et al. Mater Sci Eng C Mater Biol Appl. 2020 Jun.

Abstract

The demand for orthopedic implants continues to increase with the aging population. As the most widely used orthopedic materials, titanium and its alloys have achieved high success rates. However, the lack of bone tissue integration remains a barrier to successful operations. In this study, the titanium surface was acid-treated and functionalized with miR-21 nanocapsules via an in situ polymerization method. This coating showed a uniform miR-21 distribution and sustainable miR-21 release. The in vitro studies indicated that miR-21 could not only promote angiogenic and osteogenic differentiation of MSCs but also enhance osteoclastic activity. Additionally, in vivo evaluations, including X-ray, micro-CT, histology, immunohistochemistry, biomechanical testing, Raman and SEM-EDS, demonstrated that the micro-rough surface could increase the bone-implant contact and, thus, improved osseointegration during the early stages. More importantly, the miR-21 nanocapsule coating accelerated vascularization (high expression of CD31), bone remodeling (high expression of both osteogenesis- and osteoclast-related proteins) and bone maturation (high proportion of apatite), resulting in a significantly improved bone-implant contact and enhanced bone-implant bonding strength (twice the Ti at 1 month). These results indicated that a Ti-based micro-rough surface functionalized with miR-21 nanocapsules had potential applications in the orthopedic field.

Keywords: Bonding strength; Bone mineralization; Bone remodeling; Osseointegration; miR-21.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources