U.S. Food and Drug Administration-Certified Food Dyes as Organocatalysts in the Visible Light-Promoted Chlorination of Aromatics and Heteroaromatics
- PMID: 32280913
- PMCID: PMC7144131
- DOI: 10.1021/acsomega.0c00631
U.S. Food and Drug Administration-Certified Food Dyes as Organocatalysts in the Visible Light-Promoted Chlorination of Aromatics and Heteroaromatics
Abstract
Seven FDA-certified food dyes have been investigated as organocatalysts. As a result, Fast Green FCF and Brilliant Blue FCF have been discovered as catalysts for the chlorination of a wide range of arenes and heteroarenes in moderate to excellent yields and high regioselectivity. Mechanistic investigations of the separate systems indicate that different modes of activation are in operation, with Fast Green FCF being a light-promoted photoredox catalyst that is facilitating a one-electron oxidation of N-chlorosuccinimide (NCS) and Brilliant Blue FCF serving as a chlorine-transfer catalyst in its sulfonphthalein form with 1,3-dichloro-5,5-dimethylhydantoin (DCDMH) as stoichiometric chlorine source. Dearomatization of naphthol and indole substrates was observed in some examples using the Brilliant Blue/DCDMH system.
Copyright © 2020 American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures









Similar articles
-
Amplification of Trichloroisocyanuric Acid (TCCA) Reactivity for Chlorination of Arenes and Heteroarenes via Catalytic Organic Dye Activation.Org Lett. 2019 Jun 7;21(11):4229-4233. doi: 10.1021/acs.orglett.9b01414. Epub 2019 May 29. Org Lett. 2019. PMID: 31140821
-
Simultaneous cloud point extraction and spectrophotometric determination of carmoisine and brilliant blue FCF in food samples.Talanta. 2011 Mar 15;84(1):240-3. doi: 10.1016/j.talanta.2010.12.043. Epub 2011 Jan 8. Talanta. 2011. PMID: 21315926
-
Visible Light Mediated Photoredox Catalytic Arylation Reactions.Acc Chem Res. 2016 Aug 16;49(8):1566-77. doi: 10.1021/acs.accounts.6b00229. Epub 2016 Aug 2. Acc Chem Res. 2016. PMID: 27482835
-
Birch-Type Photoreduction of Arenes and Heteroarenes by Sensitized Electron Transfer.Angew Chem Int Ed Engl. 2019 Oct 1;58(40):14289-14294. doi: 10.1002/anie.201905485. Epub 2019 Aug 27. Angew Chem Int Ed Engl. 2019. PMID: 31379035 Free PMC article. Review.
-
Asymmetric Dearomatization of Indole Derivatives with N-Hydroxycarbamates Enabled by Photoredox Catalysis.Angew Chem Int Ed Engl. 2019 Dec 9;58(50):18069-18074. doi: 10.1002/anie.201911144. Epub 2019 Oct 24. Angew Chem Int Ed Engl. 2019. PMID: 31587423 Review.
Cited by
-
Vibration-mediated long-wavelength photolysis of electronegative bonds beyond S0-S1 and S0-T1 transitions.Commun Chem. 2024 Jun 4;7(1):126. doi: 10.1038/s42004-024-01208-0. Commun Chem. 2024. PMID: 38834838 Free PMC article.
-
Visible-Light-Induced Catalytic Selective Halogenation with Photocatalyst.Molecules. 2021 Dec 5;26(23):7380. doi: 10.3390/molecules26237380. Molecules. 2021. PMID: 34885962 Free PMC article. Review.
-
Green Organo-Photooxidative Method for the Degradation of Methylene Blue Dye.ACS Omega. 2024 Feb 28;9(10):12069-12083. doi: 10.1021/acsomega.3c09989. eCollection 2024 Mar 12. ACS Omega. 2024. PMID: 38496983 Free PMC article.
References
-
- Dalko P. I.; Moisan L. In the golden age of organocatalysis. Angew. Chem., Int. Ed. 2004, 43, 5138–5175. 10.1002/anie.200400650. - DOI - PubMed
- Bertelsen S.; Jørgensen K. A. Organocatalysis--after the gold rush. Chem. Soc. Rev 2009, 38, 2178–2189. 10.1039/b903816g. - DOI - PubMed
- Alemán J.; Cabrera S. Applications of asymmetric organocatalysis in medicinal chemistry. Chem. Soc. Rev 2013, 42, 774–793. 10.1039/C2CS35380F. - DOI - PubMed
-
- Constable D. J. C.; Dunn P. J.; Hayler J. D.; Humphrey G. R.; Leazer J. L. Jr.; Linderman R. J.; Lorenz K.; Manley J.; Pearlman B. A.; Wells A.; Zaks A.; Zhang T. Y. Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green Chem. 2007, 9, 411–420. 10.1039/B703488C. - DOI
-
- Wilcken R.; Zimmermann M. O.; Lange A.; Joerger A. C.; Boeckler F. M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem. 2013, 56, 1363–1388. 10.1021/jm3012068. - DOI - PubMed
- Cernak T.; Dykstra K. D.; Tyagarajan S.; Vachal P.; Krska S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 2016, 45, 546–576. 10.1039/C5CS00628G. - DOI - PubMed
- Petrone D. A.; Ye J.; Lautens M. Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation. Chem. Rev. 2016, 116, 8003–8104. 10.1021/acs.chemrev.6b00089. - DOI - PubMed
- Zha G.-F.; Qin H.-L.; Kantchev E. A. B. Ruthenium-catalyzed direct arylations with aryl chlorides. RSC Adv. 2016, 6, 30875–30885. 10.1039/C6RA02742C. - DOI
LinkOut - more resources
Full Text Sources
Research Materials