Glyceraldehyde-Derived Pyridinium Evokes Renal Tubular Cell Damage via RAGE Interaction
- PMID: 32283652
- PMCID: PMC7177832
- DOI: 10.3390/ijms21072604
Glyceraldehyde-Derived Pyridinium Evokes Renal Tubular Cell Damage via RAGE Interaction
Abstract
Glyceraldehyde-derived advanced glycation end products (glycer-AGEs) contribute to proximal tubulopathy in diabetes. However, what glycer-AGE structure could evoke tubular cell damage remains unknown. We first examined if deleterious effects of glycer-AGEs on reactive oxygen species (ROS) generation in proximal tubular cells were blocked by DNA-aptamer that could bind to glyceraldehyde-derived pyridinium (GLAP) (GLAP-aptamer), and then investigated whether and how GLAP caused proximal tubular cell injury. GLAP-aptamer and AGE-aptamer raised against glycer-AGEs were prepared using a systemic evolution of ligands by exponential enrichment. The binding affinity of GLAP-aptamer to glycer-AGEs was measured with a bio-layer interferometry. ROS generation was evaluated using fluorescent probes. Gene expression was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). GLAP-aptamer bound to glycer-AGEs with a dissociation constant of 7.7 × 10-5 M. GLAP-aptamer, glycer-AGE-aptamer, or antibodies directed against receptor for glycer-AGEs (RAGE) completely prevented glycer-AGE- or GLAP-induced increase in ROS generation, MCP-1, PAI-1, or RAGE gene expression in tubular cells. Our present results suggest that GLAP is one of the structurally distinct glycer-AGEs, which may mediate oxidative stress and inflammatory reactions in glycer-AGE-exposed tubular cells. Blockade of the interaction of GLAP-RAGE by GLAP-aptamer may be a therapeutic target for proximal tubulopathy in diabetic nephropathy.
Keywords: GLAP; RAGE; diabetic nephropathy; proximal tubular cells.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Figures


References
-
- IDF Diabetes Atlas-9th Edition. [(accessed on 6 April 2020)]; Available online: https://www.diabetesatlas.org/en/
-
- Tahara N., Yamagishi S., Matsui T., Takeuchi M., Nitta Y., Kodama N., Mizoguchi M., Imaizumi T. Serum levels of advanced glycation end products (AGEs) are independent correlates of insulin resistance in nondiabetic subjects. Cardiovasc. Ther. 2012;30:42–48. doi: 10.1111/j.1755-5922.2010.00177.x. - DOI - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous