Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Oct;17(10):614-628.
doi: 10.1038/s41569-020-0364-1. Epub 2020 Apr 14.

Device-based therapies for arterial hypertension

Affiliations
Review

Device-based therapies for arterial hypertension

Lucas Lauder et al. Nat Rev Cardiol. 2020 Oct.

Abstract

Arterial hypertension is the most prevalent modifiable risk factor associated with cardiovascular morbidity and mortality. Although antihypertensive drugs are widely available, in many patients blood pressure control to guideline-recommended target values is not achieved. Several device-based approaches have been introduced to lower blood pressure; most of these strategies aim to modulate autonomic nervous system activity. Clinical trials have moved from including patients with resistant hypertension receiving intensive pharmacological treatment to including patients with mild-to-moderate hypertension in the presence or absence of antihypertensive medications. Renal sympathetic denervation is the most extensively investigated device-based therapy for hypertension, and randomized, sham-controlled trials have provided proof-of-principle data for its blood pressure-lowering efficacy. Unilateral electrical baroreflex activation, endovascular baroreflex amplification and pacemaker-mediated cardiac neuromodulation therapy have yielded promising results in observational trials, which need to be confirmed in larger, adequately powered, sham-controlled trials. Until further evidence becomes available, device-based therapy for hypertension should not be considered for routine treatment. However, when considering a device-based treatment for hypertension, the underlying pathophysiology in each patient has to be taken into consideration, and the procedural risks weighed against the cardiovascular risk attributable to the elevated blood pressure. This Review summarizes the pathophysiological rationale and the latest clinical evidence for device-based therapies for hypertension.

PubMed Disclaimer

References

    1. Forouzanfar, M. H. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA 317, 165–182 (2017). - PubMed
    1. Forouzanfar, M. H. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016).
    1. Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016). - PubMed
    1. Williams, B. et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018). - PubMed
    1. Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71, e13–e115 (2018). - PubMed