Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep;24(9):2461-2472.
doi: 10.1109/JBHI.2020.2981526. Epub 2020 Apr 13.

Deep Multi-Scale Fusion Neural Network for Multi-Class Arrhythmia Detection

Deep Multi-Scale Fusion Neural Network for Multi-Class Arrhythmia Detection

Ruxin Wang et al. IEEE J Biomed Health Inform. 2020 Sep.

Abstract

Automated electrocardiogram (ECG) analysis for arrhythmia detection plays a critical role in early prevention and diagnosis of cardiovascular diseases. Extracting powerful features from raw ECG signals for fine-grained diseases classification is still a challenging problem today due to variable abnormal rhythms and noise distribution. For ECG analysis, the previous research works depend mostly on heartbeat or single scale signal segments, which ignores underlying complementary information of different scales. In this paper, we formulate a novel end-to-end Deep Multi-Scale Fusion convolutional neural network (DMSFNet) architecture for multi-class arrhythmia detection. Our proposed approach can effectively capture abnormal patterns of diseases and suppress noise interference by multi-scale feature extraction and cross-scale information complementarity of ECG signals. The proposed method implements feature extraction for signal segments with different sizes by integrating multiple convolution kernels with different receptive fields. Meanwhile, joint optimization strategy with multiple losses of different scales is designed, which not only learns scale-specific features, but also realizes cumulatively multi-scale complementary feature learning during the learning process. In our work, we demonstrate our DMSFNet on two open datasets (CPSC_2018 and PhysioNet/CinC_2017) and deliver the state-of-art performance on them. Among them, CPSC_2018 is a 12-lead ECG dataset and CinC_2017 is a single-lead dataset. For these two datasets, we achieve the F1 score [Formula: see text] and [Formula: see text] which are higher than previous state-of-art approaches respectively. The results demonstrate that our end-to-end DMSFNet has outstanding performance for feature extraction from a broad range of distinct arrhythmias and elegant generalization ability for effectively handling ECG signals with different leads.

PubMed Disclaimer

Publication types

LinkOut - more resources