Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jul:186:109485.
doi: 10.1016/j.envres.2020.109485. Epub 2020 Apr 7.

Impact of air quality on the gastrointestinal microbiome: A review

Affiliations
Review

Impact of air quality on the gastrointestinal microbiome: A review

Charlotte E Dujardin et al. Environ Res. 2020 Jul.

Abstract

Background: Poor air quality is increasingly associated with several gastrointestinal diseases suggesting a possible association between air quality and the human gut microbiome. However, details on this remain largely unexplored as current available research is scarce. The aim of this comprehensive rigorous review was to summarize the existing reports on the impact of indoor or outdoor airborne pollutants on the animal and human gut microbiome and to outline the challenges and suggestions to expand this field of research.

Methods and results: A comprehensive search of several databases (inception to August 9, 2019, humans and animals, English language only) was designed and conducted by an experienced librarian to identify studies describing the impact of air pollution on the human gut microbiome. The retrieved articles were assessed independently by two reviewers. This process yielded six original research papers on the animal GI gastrointestinal microbiome and four on the human gut microbiome. β-diversity analyses from selected animal studies demonstrated a significantly different composition of the gut microbiota between control and exposed groups but changes in α-diversity were less uniform. No consistent findings in α or β-diversity were reported among the human studies. Changes in microbiota at the phylum level disclosed substantial discrepancies across animal and human studies.

Conclusions: A different composition of the gut microbiome, particularly in animal models, is associated with exposure to air pollution. Air pollution is associated with various taxa changes, which however do not follow a clear pattern. Future research using standardized methods are critical to replicate these initial findings and advance this emerging field.

Keywords: Air pollution; Air quality; Gastrointestinal; Gut; Microbiome.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types