Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 26;14(5):5845-5854.
doi: 10.1021/acsnano.0c00983. Epub 2020 Apr 23.

Electrically Tailored Metachrosis in ZnO-C Nanowires

Affiliations

Electrically Tailored Metachrosis in ZnO-C Nanowires

Bryan Miaoxuan Sow et al. ACS Nano. .

Abstract

Carbon incorporated zinc oxide (ZnO:C) nanowires (NWs) are found to be remarkable morphing NWs. We show that the physical properties of ZnO:C NWs are engineered via the passage of electric current to produce fluorescence differences and negative differential resistance as well as electroluminescence. When a ZnO:C NW is subjected to an applied voltage bias and under ultraviolet (UV) excitation, electron-hole separation due to the voltage biasing suppresses their fluorescence at low voltages. At medium voltages, the NW exhibits metastable chemical changes that translates to tunable and reversible optical alterations akin to metachrosis found in chameleons. Concurrently, the NW displays electrical alterations with negative differential resistance behaviors. At higher voltages, these NWs are permanently modified with distinct heterogeneous chemical stoichiometry, fluorescence, and electronic properties. Such heterogeneity within the NW allows for emergence of junctions capable of electroluminescence.

Keywords: carbon incorporation; chemical modification; electroluminescence; fluorescence; negative differential resistance; zinc oxide nanowires.

PubMed Disclaimer

LinkOut - more resources