Gas exchange calculation may estimate changes in pulmonary blood flow during veno-arterial extracorporeal membrane oxygenation in a porcine model
- PMID: 32294391
- PMCID: PMC7276983
- DOI: 10.1152/ajplung.00167.2019
Gas exchange calculation may estimate changes in pulmonary blood flow during veno-arterial extracorporeal membrane oxygenation in a porcine model
Abstract
Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is used as rescue therapy for severe cardiopulmonary failure. We tested whether the ratio of CO2 elimination at the lung and the V-A ECMO (V˙co2ECMO/V˙co2Lung) would reflect the ratio of respective blood flows and could be used to estimate changes in pulmonary blood flow (Q˙Lung), i.e., native cardiac output. Four healthy pigs were centrally cannulated for V-A ECMO. We measured blood flows with an ultrasonic flow probe. V˙co2ECMO and V˙co2Lung were calculated from sidestream capnographs under constant pulmonary ventilation during V-A ECMO weaning with changing sweep gas and/or V-A ECMO blood flow. If ventilation-to-perfusion ratio (V˙/Q˙) of V-A ECMO was not 1, the V˙co2ECMO was normalized to V˙/Q˙ = 1 (V˙co2ECMONorm). Changes in pulmonary blood flow were calculated using the relationship between changes in CO2 elimination and V-A ECMO blood flow (Q˙ECMO). Q˙ECMO correlated strongly with V˙co2ECMONorm (r2 0.95-0.99). Q˙Lung correlated well with V˙co2Lung (r2 0.65-0.89, P < = 0.002). Absolute Q˙Lung could not be calculated in a nonsteady state. Calculated pulmonary blood flow changes had a bias of 76 (-266 to 418) mL/min and correlated with measured Q˙Lung (r2 0.974-1.000, P = 0.1 to 0.006) for cumulative ECMO flow reductions. In conclusion, V˙co2 of the lung correlated strongly with pulmonary blood flow. Our model could predict pulmonary blood flow changes within clinically acceptable margins of error. The prediction is made possible with normalization to a V˙/Q˙ of 1 for ECMO. This approach depends on measurements readily available and may allow immediate assessment of the cardiac output response.
Keywords: ECMO; carbon dioxide; cardiac output; intensive care; weaning.
Conflict of interest statement
The Department of Intensive Care Medicine, University Hospital Bern, has, or has had in the past, research contracts with Orion Corporation, Abbott Nutrition International, B. Braun Medical AG, CSEM SA, Edwards Lifesciences Services GmbH, Kenta Biotech Ltd, Maquet Critical Care AB, and Omnicare Clinical Research AG and research and development/consulting contracts with Edwards Lifesciences SA, Maquet Critical Care AB, and Nestlé. The money was paid into a departmental fund; no author received personal financial gain. K. F. Bachmann, D. Berger, and L. Gattinoni filed a patent for the method described. None of the other authors has any conflicts of interest, financial or otherwise, to disclose.
Figures











References
-
- Combes A, Brodie D, Chen YS, Fan E, Henriques JPS, Hodgson C, Lepper PM, Leprince P, Maekawa K, Muller T, Nuding S, Ouweneel DM, Roch A, Schmidt M, Takayama H, Vuylsteke A, Werdan K, Papazian L. The ICM research agenda on extracorporeal life support. Intensive Care Med 43: 1306–1318, 2017. doi:10.1007/s00134-017-4803-3. - DOI - PubMed
-
- De Waele E, van Zwam K, Mattens S, Staessens K, Diltoer M, Honoré PM, Czapla J, Nijs J, La Meir M, Huyghens L, Spapen H. Measuring resting energy expenditure during extracorporeal membrane oxygenation: preliminary clinical experience with a proposed theoretical model. Acta Anaesthesiol Scand 59: 1296–1302, 2015. doi:10.1111/aas.12564. - DOI - PubMed
-
- Duscio E, Cipulli F, Vasques F, Collino F, Rapetti F, Romitti F, Behnemann T, Niewenhuys J, Tonetti T, Pasticci I, Vassalli F, Reupke V, Moerer O, Quintel M, Gattinoni L. Extracorporeal CO2 removal: the minimally invasive approach, theory, and practice. Crit Care Med 47: 33–40, 2019. doi:10.1097/CCM.0000000000003430. - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources