Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Sep;14(9):1876-1884.
doi: 10.1017/S1751731120000786. Epub 2020 Apr 16.

Effects of the acid-base treatment of corn on rumen fermentation and microbiota, inflammatory response and growth performance in beef cattle fed high-concentrate diet

Affiliations

Effects of the acid-base treatment of corn on rumen fermentation and microbiota, inflammatory response and growth performance in beef cattle fed high-concentrate diet

J Liu et al. Animal. 2020 Sep.

Erratum in

Abstract

Beef cattle are often fed high-concentrate diet (HCD) to achieve high growth rate. However, HCD feeding is strongly associated with metabolic disorders. Mild acid treatment of grains in HCD with 1% hydrochloric acid (HA) followed by neutralization with sodium bicarbonate (SB) might modify rumen fermentation patterns and microbiota, thereby decreasing the negative effects of HCD. This study was thus aimed to investigate the effects of treatment of corn with 1% HA and subsequent neutralization with SB on rumen fermentation and microbiota, inflammatory response and growth performance in beef cattle fed HCD. Eighteen beef cattle were randomly allocated to three groups and each group was fed different diets: low-concentrate diet (LCD) (concentrate : forage = 40 : 60), HCD (concentrate : forage = 60 : 40) or HCD based on treated corn (HCDT) with the same concentrate to forage ratio as the HCD. The corn in the HCDT was steeped in 1% HA (wt/wt) for 48 h and neutralized with SB after HA treatment. The animal trial lasted for 42 days with an adaptation period of 7 days. At the end of the trial, rumen fluid samples were collected for measuring ruminal pH values, short-chain fatty acids, endotoxin (or lipopolysaccharide, LPS) and bacterial microbiota. Plasma samples were collected at the end of the trial to determine the concentrations of plasma LPS, proinflammatory cytokines and acute phase proteins (APPs). The results showed that compared with the LCD, feeding the HCD had better growth performance due to a shift in the ruminal fermentation pattern from acetate towards propionate, butyrate and valerate. However, the HCD decreased ruminal pH and increased ruminal LPS release and the concentrations of plasma proinflammatory cytokines and APPs. Furthermore, feeding the HCD reduced bacterial richness and diversity in the rumen. Treatment of corn increased resistant starch (RS) content. Compared with the HCD, feeding the HCDT reduced ruminal LPS and improved ruminal bacterial microbiota, resulting in decreased inflammation and improved growth performance. In conclusion, although the HCD had better growth performance than the LCD, feeding the HCD promoted the pH reduction and the LPS release in the rumen, disturbed the ruminal bacterial stability and increased inflammatory response. Treatment of corn with HA in combination with subsequent SB neutralization increased the RS content and helped counter the negative effects of feeding HCD to beef steers.

Keywords: hydrochloric acid; lipopolysaccharide; ruminal bacteria; sodium bicarbonate; steer.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The content of resistant starch (a) and total starch (b) of corn included in different diets fed to beef cattle. LCD_Corn represents corn included in the low-concentrate diet (LCD) and steeped in tap water for 48 h; HCD_Corn represents corn included in the high-concentrate diet (HCD) and steeped in tap water for 48 h; HCDT_Corn represents corn included in the HCD and steeped in 1% (wt/wt) hydrochloric acid for 48 h in combination with subsequent sodium bicarbonate neutralization. Data are presented as the mean ± SD. A,B: Means without a common letter differ (P < 0.01).
Figure 2
Figure 2
Bacterial composition in rumen fluid at the phylum level when beef cattle were fed different diets. Only the top 10 abundant phyla are presented, and other phyla were pooled into ‘Others’. LCD, low-concentrate diet based on corn steeped in tap water for 48 h; HCD, high-concentrate diet based on corn steeped in tap water for 48 h; HCDT, high-concentrate diet based on corn steeped in 1% (wt/wt) hydrochloric acid for 48 h in combination with subsequent sodium bicarbonate neutralization.
Figure 3
Figure 3
Bacterial composition in rumen fluid at the genus level when beef cattle were fed different diets. Only the top 20 abundant genera are presented, and other genera were pooled into ‘Others’. LCD, low-concentrate diet based on corn steeped in tap water for 48 h; HCD, high-concentrate diet based on corn steeped in tap water for 48 h; HCDT, high-concentrate diet based on corn steeped in 1% (wt/wt) hydrochloric acid for 48 h in combination with subsequent sodium bicarbonate neutralization.

References

    1. American Association of Cereal Chemists 2010. Approved methods of analysis, 11th edition AACC International, St. Paul, MN, USA.
    1. Association of Official Analytical Chemists 2002. Resistant starch in starch and plant materials: enzymatic digestion. Official method of analysis. AOAC, Washington, DC, USA.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J and Knight R 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335−336. - PMC - PubMed
    1. Chinese Academy of Agricultural Sciences Institute of Animal Science and Chinese Animal Nutrition Association 1985. Tables of feed composition and nutritive value in China. Agricultural Publishing House, Beijing, China.
    1. Deckardt K, Khol-Parisini A and Zebeli Q 2013. Peculiarities of enhancing resistant starch in ruminants using chemical methods: opportunities and challenges. Nutrients 5, 1970−1988. - PMC - PubMed

Publication types

LinkOut - more resources