Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2020 Apr 17:9:e57105.
doi: 10.7554/eLife.57105.

Rapid response

Affiliations
Comment

Rapid response

Jon Hughes. Elife. .

Abstract

Extremely short X-ray pulses from a free-electron laser are helping to clarify how phytochromes respond to light, but puzzles remain.

Keywords: Deinococcus radiodurans; SFX; free-electron laser; initial photoresponse; molecular biophysics; phytochromes; structural biology.

PubMed Disclaimer

Conflict of interest statement

JH No competing interests declared

Figures

Figure 1.
Figure 1.. The bilin inside the phytochrome before and after photoactivation.
The four rings of the bilin are labelled A-D. Carbon atoms before and one picosecond after photoactivation are shown in grey and cyan, respectively. Water molecules before and after photoactivation are shown in deep red and bright red, respectively. Otherwise, oxygen, nitrogen and sulphur atoms are shown in red, blue and yellow, respectively. The ~50° rotation of the D-ring is indicated by the red arrow. The pyrrole water molecule (PW) above the nitrogen atoms of the A-, B- and C-rings disappears on photoactivation. Hydrogen bonds (yellow dashes) between the bilin and amino acid side chains in the rest of the phytochrome are also broken. Figure prepared by the author using PyMol from data provided by Claesson et al.

Comment on

  • The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser.
    Claesson E, Wahlgren WY, Takala H, Pandey S, Castillon L, Kuznetsova V, Henry L, Panman M, Carrillo M, Kübel J, Nanekar R, Isaksson L, Nimmrich A, Cellini A, Morozov D, Maj M, Kurttila M, Bosman R, Nango E, Tanaka R, Tanaka T, Fangjia L, Iwata S, Owada S, Moffat K, Groenhof G, Stojković EA, Ihalainen JA, Schmidt M, Westenhoff S. Claesson E, et al. Elife. 2020 Mar 31;9:e53514. doi: 10.7554/eLife.53514. Elife. 2020. PMID: 32228856 Free PMC article.

References

    1. Claesson E, Wahlgren WY, Takala H, Pandey S, Castillon L, Kuznetsova V, Henry L, Panman M, Carrillo M, Kübel J, Nanekar R, Isaksson L, Nimmrich A, Cellini A, Morozov D, Maj M, Kurttila M, Bosman R, Nango E, Tanaka R, Tanaka T, Fangjia L, Iwata S, Owada S, Moffat K, Groenhof G, Stojković EA, Ihalainen JA, Schmidt M, Westenhoff S. The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. eLife. 2020;9:e53514. doi: 10.7554/eLife.53514. - DOI - PMC - PubMed
    1. Essen LO, Mailliet J, Hughes J. The structure of a complete phytochrome sensory module in the Pr ground state. PNAS. 2008;105:14709–14714. doi: 10.1073/pnas.0806477105. - DOI - PMC - PubMed
    1. Rüdiger W, Thümmler F, Cmiel E, Schneider S. Chromophore structure of the physiologically active form (Pfr) of phytochrome. PNAS. 1983;80:6244–6248. doi: 10.1073/pnas.80.20.6244. - DOI - PMC - PubMed
    1. Takala H, Björling A, Berntsson O, Lehtivuori H, Niebling S, Hoernke M, Kosheleva I, Henning R, Menzel A, Ihalainen JA, Westenhoff S. Signal amplification and transduction in phytochrome photosensors. Nature. 2014;509:245–248. doi: 10.1038/nature13310. - DOI - PMC - PubMed
    1. Yang X, Kuk J, Moffat K. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction. PNAS. 2008;105:14715–14720. doi: 10.1073/pnas.0806718105. - DOI - PMC - PubMed