Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 May;30(5):399-407.
doi: 10.1016/j.tcb.2020.01.010. Epub 2020 Feb 24.

Structural Insights into STING Signaling

Affiliations
Review

Structural Insights into STING Signaling

Sabrina L Ergun et al. Trends Cell Biol. 2020 May.

Abstract

Since its discovery 12 years ago, the stimulator of interferon genes (STING) pathway has attracted the intense focus of top cell biologists, biochemists, and structural biologists, due to its unique activation mechanisms and broad implications in cancer, aging, and autoimmunity. The STING pathway is an essential innate immune signaling cascade responsible for the sensing of aberrant cytosolic double-stranded DNA (dsDNA), which is a hallmark of cancer and viral infection. Erroneous STING activation can exacerbate many autoimmune and inflammatory syndromes. Therefore, it is remarkable how rapidly, effectively, and specifically the STING pathway responds to a myriad of threats while generally maintaining immune homeostasis. Here we review high-impact structural work that collectively paints a picture of STING signaling with atomic resolution. The elegant molecular mechanisms not only give clues to how STING has evolved to distinguish between self and foreign, but they also enable development of novel therapeutics to treat STING-related diseases.

Keywords: STING; innate immunity; polymerization; structural biology.

PubMed Disclaimer

LinkOut - more resources