Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 10:725:138351.
doi: 10.1016/j.scitotenv.2020.138351. Epub 2020 Apr 3.

Challenges of arsenic removal from municipal wastewater by coagulation with ferric chloride and alum

Affiliations

Challenges of arsenic removal from municipal wastewater by coagulation with ferric chloride and alum

Jie Ge et al. Sci Total Environ. .

Abstract

Discharge of treated municipal wastewater containing arsenic (As) may cause adverse effects on the environment and drinking water sources. Arsenic concentrations were measured throughout the treatment systems at two municipal wastewater plants in New Jersey, USA. The efficiency of As removal by ferric chloride and alum coagulants were evaluated. Besides, the effects of suspended solids in the mixed liquor, pH, and orthophosphate (PO43-) on As removal were investigated. The total recoverable As (TAs) concentrations in the influent and effluent of Plant A were in the ranges of 2.00-3.00 and 1.50-2.30 μg/L, respectively. The results indicated that <30% of the As was removed by the conventional biological wastewater treatment processes. The influent and effluent TAs concentrations at Plant B was below 1.00 μg/L. The bench-scale coagulation results demonstrated for the first time that the coagulation treatment could not effectively remove As from the municipal wastewater to <2.00 μg/L. Very high doses of the coagulants (8 and 40 mg/L of Fe(III) or Al(III)) were required to reduce the TAs from 2.84 and 8.61 μg/L in the primary clarifier effluent and arsenate-spiked effluent samples to <2.00 μg/L, respectively, which could be attributed to the high concentrations of PO43- and dissolved organic matters (DOM) in the wastewater. The protein DOM in wastewater may negatively impact removal efficiencies more than the DOM in natural water, which mainly consists of humic substances. Furthermore, an artificial neural network was constructed to determine the relative importance of different parameters for As removal. Under the experimental conditions, the importance followed the order: coagulant dose>dissolved PO43- > initial As concentration > pH. The findings of this study will help develop effective treatment processes to remove As from municipal wastewater.

Keywords: Alum; Arsenic removal; Artificial neural network; Coagulation treatment; Ferric chloride; Municipal wastewater.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources