Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Dec 18;26(71):16975-16984.
doi: 10.1002/chem.202000788. Epub 2020 Sep 23.

Recent Advances and Optoelectronic Applications of Lead-Free Halide Double Perovskites

Affiliations
Review

Recent Advances and Optoelectronic Applications of Lead-Free Halide Double Perovskites

Lei Lu et al. Chemistry. .

Abstract

Organic-inorganic metal halide perovskites (most notably CH3 NH3 PbI3 ) have demonstrated remarkable physical attributes for photovoltaic and diverse optoelectronic applications, whereas concerns about toxicity owing to the use of lead in the chemical composition still motivate further exploration of new, nontoxic candidates. Lead-free halide double perovskites (HDPs), designed by the rational chemical substitution of Pb2+ with other nontoxic candidate elements, have recently attracted interest as a fascinating alternative to their Pb-based counterparts. Herein, recent advances in crystal structures, physical properties, and versatile optoelectronic applications of lead-free HDPs, such as solar cells, photodetectors, X-ray detectors, and light-emitting diodes, are reviewed. Perspectives to improve the physical and photoelectric properties of existing HDP materials are also discussed and will favor future development of new, lead-free HDP candidates.

Keywords: optical band gaps; optoelectronic applications; organic-inorganic hybrid composites; perovskite phases; phase stability.

PubMed Disclaimer

References

    1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
    1. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Graetzel, N.-G. Park, Sci. Rep. 2012, 2, 591.
    1. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
    1. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
    1. D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, R. H. Friend, Q. Gong, H. J. Snaith, R. Zhu, Science 2018, 360, 1442.

LinkOut - more resources