Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Apr 3:11:178.
doi: 10.3389/fendo.2020.00178. eCollection 2020.

GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials

Affiliations
Review

GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials

Matthew P Gilbert et al. Front Endocrinol (Lausanne). .

Abstract

The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are released from enteroendocrine cells in response to the presence of nutrients in the small intestines. These homones facilitate glucose regulation by stimulating insulin secretion in a glucose dependent manner while suppressing glucagon secretion. In patients with type 2 diabetes (T2DM), an impaired insulin response to GLP-1 and GIP contributes to hyperglycemia. Dipeptidyl peptidase-4 (DPP-4) inhibitors block the breakdown of GLP-1 and GIP to increase levels of the active hormones. In clinical trials, DPP-4 inhibitors have a modest impact on glycemic control. They are generally well-tolerated, weight neutral and do not increase the risk of hypoglycemia. GLP-1 receptor agonists (GLP-1 RA) are peptide derivatives of either exendin-4 or human GLP-1 designed to resist the activity of DPP-4 and therefore, have a prolonged half-life. In clinical trials, they have demonstrated superior efficacy to many oral antihyperglycemic drugs, improved weight loss and a low risk of hypoglycemia. However, GI adverse events, particularly nausea, vomiting, and diarrhea are seen. Both DPP-4 inhibitors and GLP-1 RAs have demonstrated safety in robust cardiovascular outcome trials, while several GLP-1 RAs have been shown to significantly reduce the risk of major adverse cardiovascular events in persons with T2DM with pre-existing cardiovascular disease (CVD). Several clinical trials have directly compared the efficacy and safety of DPP-4 inhibitors and GLP-1 RAs. These studies have generally demonstrated that the GLP-1 RA provided superior glycemic control and weight loss relative to the DPP-4 inhibitor. Both treatments were associated with a low and comparable incidence of hypoglycemia, but treatment with GLP-1 RAs were invariably associated with a higher incidence of GI adverse events. A few studies have evaluated switching patients from DPP-4 inhibitors to a GLP-1RA and, as expected, improved glycemic control and weight loss are seen following the switch. According to current clinical guidelines, GLP-1RA and DPP-4 inhibitors are both indicated for the glycemic management of patients with T2DM across the spectrum of disease. GLP-1RA may be preferred over DPP- 4 inhibitors for many patients because of the greater reductions in hemoglobin A1c and weight loss observed in the clinical trials. Among patients with preexisting CVD, GLP-1 receptor agonists with a proven cardiovascular benefit are indicated as add-on to metformin therapy.

Keywords: DPP-4 inhibitors; GLP-1 receptor agonists; cardiovascular outcomes trials; clinical trials; incretin biology; incretin hormones; type 2 diabetes.

PubMed Disclaimer

References

    1. Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. (1986) 63:492–8. 10.1210/jcem-63-2-492 - DOI - PubMed
    1. Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. (1986) 29:46–52. 10.1007/BF02427280 - DOI - PubMed
    1. Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia. (2011) 54:10–8. 10.1007/s00125-010-1896-4 - DOI - PubMed
    1. Calanna S, Christensen M, Holst JJ, Laferrere B, Gluud LL, Vilsboll T, et al. Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia. (2013) 56:965–72. 10.1007/s00125-013-2841-0 - DOI - PMC - PubMed
    1. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. (1985) 89:1070–7. 10.1016/0016-5085(85)90211-2 - DOI - PubMed

MeSH terms

Substances