Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr;32(4):1512-1524.
doi: 10.1109/TNNLS.2020.2984831. Epub 2021 Apr 2.

Multilinear Compressive Learning

Multilinear Compressive Learning

Dat Thanh Tran et al. IEEE Trans Neural Netw Learn Syst. 2021 Apr.

Abstract

Compressive learning (CL) is an emerging topic that combines signal acquisition via compressive sensing (CS) and machine learning to perform inference tasks directly on a small number of measurements. Many data modalities naturally have a multidimensional or tensorial format, with each dimension or tensor mode representing different features such as the spatial and temporal information in video sequences or the spatial and spectral information in hyperspectral images. However, in existing CL frameworks, the CS component utilizes either random or learned linear projection on the vectorized signal to perform signal acquisition, thus discarding the multidimensional structure of the signals. In this article, we propose multilinear CL (MCL), a framework that takes into account the tensorial nature of multidimensional signals in the acquisition step and builds the subsequent inference model on the structurally sensed measurements. Our theoretical complexity analysis shows that the proposed framework is more efficient compared to its vector-based counterpart in both memory and computation requirement. With extensive experiments, we also empirically show that our MCL framework outperforms the vector-based framework in object classification and face recognition tasks, and scales favorably when the dimensionalities of the original signals increase, making it highly efficient for high-dimensional multidimensional signals.

PubMed Disclaimer

LinkOut - more resources