Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 20;10(1):6610.
doi: 10.1038/s41598-020-63674-5.

Fully Spray-Coated Triple-Cation Perovskite Solar Cells

Affiliations

Fully Spray-Coated Triple-Cation Perovskite Solar Cells

James E Bishop et al. Sci Rep. .

Abstract

We use ultrasonic spray-coating to sequentially deposit thin films of tin oxide, a triple-cation perovskite and spiro-OMeTAD, allowing us fabricate perovskite solar cells (PSCs) with a champion reverse scan power conversion efficiency (PCE) of 19.4% on small-area substrates. We show that the use of spray-deposition permits us to rapidly (>80 mm s-1) coat 25 mm × 75 mm substrates that were divided into a series of devices each with an active area of 15.4 mm2, yielding an average PCE of 10.3% and a peak PCE of 16.3%. By connecting seven 15.4 mm2 devices in parallel on a single substrate, we create a device having an effective active area of 1.08 cm2 and a PCE of 12.7%. This work demonstrates the possibility for spray-coating to fabricate high efficiency and low-cost perovskite solar cells at speed.

PubMed Disclaimer

Conflict of interest statement

D.G.L. is co-director of the company Ossila Ltd that retail materials and equipment for perovskite photovoltaic device research and development. The other authors have no competing interests.

Figures

Figure 1
Figure 1
Part (a) shows a photograph of small and large-area fully spray-coated perovskite solar cells. Parts (b,c) show a cross-sectional SEM image of complete devices incorporating a spray-cast perovskite layer. The device in part (b) utilises spin cast SnO2 and spiro-OMeTAD layers whereas the device in part (c) is fully spray-coated.
Figure 2
Figure 2
Box plots showing reverse scan PSC performance recorded from small-area (2.5 mm2) devices A-D (see Table 1 for a description of device labels).
Figure 3
Figure 3
Topographical (panels a,c,e,g) and laser-beam-induced current mapping (panels b,d,f,h) images of spray-coated perovskite solar cells. See Table 1 for a description of device labels.
Figure 4
Figure 4
(a) Current-voltage characteristics for “champion” fully spray-cast perovskite solar cells with an active area of 2.5 mm2 (small-area) and 15.4 mm2 (large-area). The reverse scan PCE for these sweeps are 19.4% and 16.3% for the small and large-area cells respectively. (b) Output power of the champion devices when held (for 60 s) at a fixed voltage close to the maximum power point, indicating a stabilised PCE of 18.7% and 16.3% for small and large-area cells respectively. (c) A histogram of reverse-scan PCE data from 43 fully spray-cast small-area devices and 45 large-area devices.

References

    1. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009;131:6050–6051. doi: 10.1021/ja809598r. - DOI - PubMed
    1. NREL. Best Research-Cell Efficiencies, https://www.nrel.gov/pv/cell-efficiency.html (accessed October 2019).
    1. D’Innocenzo V, et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014;5:3586. doi: 10.1038/ncomms4586. - DOI - PubMed
    1. Eperon GE, et al. Environmental Science Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014;7:982–988. doi: 10.1039/c3ee43822h. - DOI
    1. Egger DA, et al. What Remains Unexplained about the Properties of Halide Perovskites? Adv. Mater. 2018;30:1800691. doi: 10.1002/adma.201800691. - DOI - PubMed

LinkOut - more resources