Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions
- PMID: 32318078
- PMCID: PMC7155768
- DOI: 10.3389/fpls.2020.00297
Bacillus licheniformis FMCH001 Increases Water Use Efficiency via Growth Stimulation in Both Normal and Drought Conditions
Abstract
Increasing agricultural losses due to biotic and abiotic stresses caused by climate change challenge food security worldwide. A promising strategy to sustain crop productivity under conditions of limited water availability is the use of plant growth promoting rhizobacteria (PGPR). Here, the effects of spore forming Bacillus licheniformis (FMCH001) on growth and physiology of maize (Zea mays L. cv. Ronaldinho) under well-watered and drought stressed conditions were investigated. Pot experiments were conducted in the automated high-throughput phenotyping platform PhenoLab and under greenhouse conditions. Results of the PhenoLab experiments showed that plants inoculated with B. licheniformis FMCH001 exhibited increased root dry weight (DW) and plant water use efficiency (WUE) compared to uninoculated plants. In greenhouse experiments, root and shoot DW significantly increased by more than 15% in inoculated plants compared to uninoculated control plants. Also, the WUE increased in FMCH001 plants up to 46% in both well-watered and drought stressed plants. Root and shoot activities of 11 carbohydrate and eight antioxidative enzymes were characterized in response to FMCH001 treatments. This showed a higher antioxidant activity of catalase (CAT) in roots of FMCH001 treated plants compared to uninoculated plants. The higher CAT activity was observed irrespective of the water regime. These findings show that seed coating with Gram positive spore forming B. licheniformis could be used as biostimulants for enhancing plant WUE under both normal and drought stress conditions.
Keywords: antioxidants; biostimulants; plant growth promoting rhizobacteria; plant probiotics; water use efficiency.
Copyright © 2020 Akhtar, Amby, Hegelund, Fimognari, Großkinsky, Westergaard, Müller, Moelbak, Liu and Roitsch.
Figures
References
-
- Akhtar S. S., Andersen M. N., Naveed M., Zahir Z. A., Liu F. (2015). Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct. Plant Biol. 42 770–781. - PubMed
-
- Belimov A. A., Dodd I. C., Safronova V. I., Shaposhnikov A. I., Azarova T. S., Makarova N. M., et al. (2015). Rhizobacteria that produce auxins and contain 1-amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato (Solanum tuberosum). Ann. Appl. Biol. 167 11–25. 10.1111/aab.12203 - DOI
-
- Calvo-Polanco M., Sánchez-Romera B., Aroca R., Asins M. J., Declerck S., Dodd I. C., et al. (2016). Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ. Exp. Bot. 131 47–57. 10.1016/j.envexpbot.2016.06.015 - DOI
LinkOut - more resources
Full Text Sources
Miscellaneous
