Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants
- PMID: 32320060
- DOI: 10.1111/ppl.13112
Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants
Abstract
Soil salinity is a constraint for major agricultural crops leading to severe yield loss, which may increase with the changing climatic conditions. Disruption in the cellular ionic homeostasis is one of the primary responses induced by elevated sodium ions (Na+ ). Therefore, unraveling the mechanism of Na+ uptake and transport in plants along with the characterization of the candidate genes facilitating ion homeostasis is obligatory for enhancing salinity tolerance in crops. This review summarizes the current advances in understanding the ion homeostasis mechanism in crop plants, emphasizing the role of transporters involved in the regulation of cytosolic Na+ level along with the conservation of K+ /Na+ ratio. Furthermore, expression profiles of the candidate genes for ion homeostasis were also explored under various developmental stages and tissues of Oryza sativa based on the publicly available microarray data. The review also gives an up-to-date summary on the efforts to increase salinity tolerance in crops by manipulating selected stress-associated genes. Overall, this review gives a combined view on both the ionomic and molecular background of salt stress tolerance in plants.
© 2020 Scandinavian Plant Physiology Society.
References
-
- Ali Z, Park HC, Ali A, Oh DH, Aman R, Kropornicka A, Hong H, Choi W, Chung WS, Kim WY, Bressan RA, Bohnert HJ, Lee SY, Yun DJ (2012) TsHKT1; 2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiol 158: 1463-1474
-
- Almeida DM, Oliveira MM, Saibo NJM (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40: 326-345
-
- Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581: 2247-2254
-
- Apse MP, Aharon GS, Snedden WS, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256-1258
-
- Ardie SW, Xie L, Takahashi R, Liu S, Takano T (2009) Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J Exp Bot 60: 3491-3502
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
