Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul;103(7):6244-6249.
doi: 10.3168/jds.2019-17644. Epub 2020 Apr 22.

Short communication: Characterization of molasses chemical composition

Affiliations
Free article

Short communication: Characterization of molasses chemical composition

A Palmonari et al. J Dairy Sci. 2020 Jul.
Free article

Abstract

Beet and cane molasses are produced worldwide as a by-product of sugar extraction and are widely used in animal nutrition. Due to their composition, they are fed to ruminants as an energy source. However, molasses has not been properly characterized in the literature; its description has been limited to the type (sugarcane or beet) or to the amount of dry matter (DM), total or water-soluble sugars, crude protein, and ash. Our objective was to better characterize the composition of cane and beet molasses, examine possible differences, and obtain a proper definition of such feeds. For this purpose, 16 cane and 16 beet molasses samples were sourced worldwide and analyzed for chemical composition. The chemical analysis used in this trial characterized 97.4 and 98.3% of the compounds in the DM of cane and beet molasses, respectively. Cane molasses contained less DM compared with beet molasses (76.8 ± 1.02 vs. 78.3 ± 1.61%) as well as crude protein content (6.7 ± 1.8 vs. 13.5 ± 1.4% of DM), with a minimum value of 2.2% of DM in cane molasses and a maximum of 15.6% of DM in beet molasses. The amount of sucrose differed between beet and cane molasses (60.9 ± 4.4 vs. 48.8 ± 6.4% of DM), but variability was high even within cane molasses (39.2-67.3% of DM) and beet molasses. Glucose and fructose were detected in cane molasses (5.3 ± 2.7 and 8.1 ± 2.8% of DM, respectively), showing high variability. Organic acid composition differed as well. Lactic acid was more concentrated in cane molasses than in beet molasses (6.1 ± 2.8 vs. 4.5 ± 1.8% of DM), varying from 1.6 to 12.8% of DM in cane molasses. Dietary cation-anion difference showed numerical differences among cane and beet molasses (7 ± 53 vs. 66 ± 45 mEq/100 g of DM, on average). It varied from -76 to +155 mEq/100 g of DM in the cane group and from +0 to +162 mEq/100 g of DM in the beet group. Data obtained in this study detailed differences in composition between sources of molasses and suggested that a more complete characterization could improve the use of molasses in ration formulation.

Keywords: chemical composition; molasses; variability.

PubMed Disclaimer

MeSH terms

LinkOut - more resources