Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Oct 18;27(21):8239-49.
doi: 10.1021/bi00421a038.

Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups

Affiliations

Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups

A Blume et al. Biochemistry. .

Abstract

Fourier transform infrared spectroscopy has been used to characterize the carbonyl stretching vibration of DMPC, DMPE, DMPG, and DMPA, all labeled with 13C at the carbonyl group of the sn-2 chain. Due to the vibrational isotope effect, the 13C = O and the 12C = O vibrational bands are separated by ca. 40-43 cm-1. This frequency difference does not change when the labeling is reversed with the 13C = O group at the sn-1 chain. For lipids in organic solvents possible conformational differences between the sn-1 and sn-2 ester groups have no effect on the vibrational frequency of the C = O groups. In aqueous dispersion unlabeled phospholipids always show a superposition of two bands for the C = O vibration located at ca. 1740 and 1727 cm-1. These two bands have previously been assigned to the sn-1 and sn-2 C = O groups. FT-IR spectra of 13C-labeled phospholipids show that the vibrational bands of both, the sn-1 as well as the sn-2 C = O group, are clearly superpositions of at least two underlying components of different frequency and intensity. Band frequencies were determined by Fourier self-deconvolution and second-derivative spectroscopy. The difference between the component bands is ca. 11-17 cm-1. Again, the conformational effect as shown by reversed labeling is negligible with only 1-2 cm-1. The splitting of the C = O vibrational bands in H2O and D2O is caused by hydrogen bonding of water molecules to both C = O groups as shown by a comparison with spectra of model ester compounds in different solvents. To extract quantitative information about changes in hydration, band profiles were stimulated with Gaussian-Lorentzian functions. The chemical nature of the head group and its electronic charge have distinctive effects on the extent of hydration of the carbonyl groups. In the gel and liquid-crystalline phase of DMPC the sn-2 C = O group is more hydrated than the sn-1 C = O. This is accord with the conformation determined by X-ray analysis. In DMPG the sn-1 C = O group seems to be more accessible to water, indicating a different conformation of the glycerol backbone.

PubMed Disclaimer

Publication types