Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 20:727:138468.
doi: 10.1016/j.scitotenv.2020.138468. Epub 2020 Apr 15.

Can rain suppress smoldering peat fire?

Affiliations

Can rain suppress smoldering peat fire?

Shaorun Lin et al. Sci Total Environ. .

Abstract

Smoldering wildfire in peatlands contributes significantly to global carbon emissions and regional haze events. Smoldering fire in peatlands is one of the largest and most persistent fire phenomena on Earth. Here we assess the underlying mechanism of rain in suppressing the smoldering peat fire in the shallow soil layer up to 15 cm deep through laboratory experiments. We show that the minimum rainfall intensity to extinguish the peat fire is roughly 4 mm/h, so that the persistent light rain cannot suppress such smoldering wildfire. The required rain duration, ∆t (min), for extinguishing smoldering peat fire decreases with the rainfall intensities, I (mm/h), as log10∆t = - 1.15log10I + 3.3, and is much longer than that for extinguishing flaming wildfire. We also identify that the required rainfall depth for extinguishing peat fire gradually decreases with the rainfall intensity and approaches a minimum value of 13 mm under violent rain. As rainfall intensity increases, the carbon emission flux from peat fire decreases. Therefore, we conclude that the short-term violent rain is most effective for suppressing the persistent smoldering peat fire. This research helps evaluate the impact of weather on the development of peat fire and improve the prediction of carbon emissions from peat fire with the use of regional weather models.

Keywords: Carbon emissions; Fire suppression; Peatland; Rainfall intensity; Underground fire; Wildland fire.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources