T2* Placental Magnetic Resonance Imaging in Preterm Preeclampsia: An Observational Cohort Study
- PMID: 32336233
- PMCID: PMC7682790
- DOI: 10.1161/HYPERTENSIONAHA.120.14701
T2* Placental Magnetic Resonance Imaging in Preterm Preeclampsia: An Observational Cohort Study
Abstract
Placental dysfunction underlies the cause of pregnancies complicated by preeclampsia. The use of placental magnetic resonance imaging to provide an insight into the pathophysiology of preeclampsia and thus assess its potential use to inform prognosis and clinical management was explored. In this prospective observational cohort study, 14 women with preterm preeclampsia and 48 gestation-matched controls using 3-Tesla magnetic resonance imaging at median of 31.6 weeks (interquartile range [IQR], 28.6-34.6) and 32.2 weeks (IQR, 28.6-33.8), respectively, were imaged. The acquired data included T2-weighted images and T2* maps of the placenta, the latter an indicative measure of placental oxygenation. Placentae in women with preeclampsia demonstrated advanced lobulation, varied lobule sizes, high granularity, and substantial areas of low-signal intensity on T2-weighted imaging, with reduced entire placental mean T2* values for gestational age (2 sample t test, t=7.49) correlating with a reduction in maternal PlGF (placental growth factor) concentrations (Spearman rank correlation coefficient 0.76) and increased lacunarity values (t=3.26). Median mean T2* reduced from 67 ms (IQR, 54-73) at 26.0 to 29.8 weeks' gestation to 38 ms (IQR, 28-40) at 34.0 to 37.9 weeks' gestation in the control group. In women with preeclampsia, median T2* was 23 ms (IQR, 20-23) at 26.0 to 29.8 weeks' gestation and remained low (22 ms [IQR, 20-26] at 34.0-37.8 weeks' gestation). Histological features of maternal vascular malperfusion were only found in placentae from women with preeclampsia. Placental volume did not differ between the control group and women with preeclampsia. Placental magnetic resonance imaging allows both objective quantification of placental function in vivo and elucidation of the complex mechanisms underlying preeclampsia development.
Keywords: magnetic resonance imaging; placenta; preeclampsia; pregnancy.
Figures
Comment in
-
Preeclamptic Placenta: New Insights Using Placental Magnetic Resonance Imaging.Hypertension. 2020 Jun;75(6):1412-1413. doi: 10.1161/HYPERTENSIONAHA.120.14855. Epub 2020 May 13. Hypertension. 2020. PMID: 32401645 No abstract available.
References
-
- Hutcheon JA, Lisonkova S, Joseph KS. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract Res Clin Obstet Gynaecol. 2011;25:391–403. doi: 10.1016/j.bpobgyn.2011.01.006. - PubMed
-
- Cantwell R, Clutton-Brock T, Cooper G, Dawson A, Drife J, Garrod D, Harper A, Hulbert D, Lucas S, McClure J, et al. Saving Mothers’ lives: reviewing maternal deaths to make motherhood safer: 2006-2008. The eighth report of the confidential enquiries into maternal deaths in the United Kingdom. BJOG. 2011;118(suppl 1):1–203. doi: 10.1111/j.1471-0528.2010.02847.x. - PubMed
-
- Kingdom JC, Audette MC, Hobson SR, Windrim RC, Morgen E. A placenta clinic approach to the diagnosis and management of fetal growth restriction. Am J Obstet Gynecol. 2018;218(2s):S803–S817. doi: 10.1016/j.ajog.2017.11.575. - PubMed
-
- Cameron IL, Ord VA, Fullerton GD. Characterization of proton NMR relaxation times in normal and pathological tissues by correlation with other tissue parameters. Magn Reson Imaging. 1984;2:97–106. doi: 10.1016/0730-725x(84)90063-8. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
