Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug 1:728:138768.
doi: 10.1016/j.scitotenv.2020.138768. Epub 2020 Apr 19.

Sharing menus and kids' specials: Inter- and intraspecific differences in stable isotope niches between sympatrically breeding storm-petrels

Affiliations
Free article

Sharing menus and kids' specials: Inter- and intraspecific differences in stable isotope niches between sympatrically breeding storm-petrels

Anne N M A Ausems et al. Sci Total Environ. .
Free article

Abstract

Species sharing resources are predicted to compete, but co-occurring species can avoid competition through niche partitioning. Here, we investigated the inter- and intra-specific differences using stable isotope analyses in the black-bellied storm-petrel (Fregetta tropica) and the Wilson's storm-petrel (Oceanites oceanicus), breeding sympatrically in maritime Antarctica. We analysed stable carbon, nitrogen and oxygen isotopes in samples representing different life stages; chick down (pre-laying females), chick feather (chick), and adult blood (chick-rearing adults). Pre-laying females had wider stable isotope niches than chicks or chick-rearing adults, due to pre-laying females being free roaming while chick-rearing adults were central-place-foragers. Chicks were fed at a higher trophic level than the adults (higher δ15N), likely to compensate for the high nutritional demands of the growing chicks. Wilson's storm-petrels showed substantial overlap in stable isotope niches between all life stages, while the black-bellied storm-petrel chicks showed very little overlap. Wilson's storm-petrel niches significantly overlapped with those of pre-laying and chick-rearing black-bellied storm-petrels, suggesting negligible niche partitioning. Chick growth rate was negatively correlated with chick δ15N values, suggesting nutritional stress resulting in the use endogenous instead of dietary amino acids in protein synthesis. The higher trophic level of the relatively larger black-bellied storm-petrel chicks may be due to their longer stay in the nest, and relatively larger body mass gain, despite chick growth rates being similar to the smaller Wilson's storm-petrel chicks. Despite breeding sympatrically, the studied storm-petrel species showed considerable overlap in isotopic niches, which may be explained by sharing the same main prey species, reducing the detectability of foraging niche partitioning through stable isotope analyses. We found dietary shifts in black-bellied storm-petrels that are absent in Wilson's, showing different chick provisioning strategies, and shows that the high productivity of the Antarctic marine ecosystem may facilitate foraging niche overlap of sympatrically living species.

Keywords: Antarctica; Black-bellied storm-petrel; Chick growth rate; Niche partitioning; Stable isotopes; Wilson's storm-petrel.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources