Multi-component design and in-situ synthesis of visible-light-driven SnO2/g-C3N4/diatomite composite for high-efficient photoreduction of Cr(VI) with the aid of citric acid
- PMID: 32339876
- DOI: 10.1016/j.jhazmat.2020.122694
Multi-component design and in-situ synthesis of visible-light-driven SnO2/g-C3N4/diatomite composite for high-efficient photoreduction of Cr(VI) with the aid of citric acid
Abstract
A novel ternary SnO2/g-C3N4/diatomite (SCN/DE) nanocomposite was rationally designed and successfully synthesized via a two-step method with in-situ polymerization and self-assembling. Under visible light illumination, the resulting SCN/DE composite exhibited superior photocatalytic performance and good reusability for the photoreduction of Cr(VI) to Cr(III) in the presence of citric acid, the apparent rate constant of SCN/DE composite was up to around 22.68 times, 13.53 times and 8.65 times as much as those of g-C3N4 (CN), g-C3N4/diatomite (CN/DE) and SnO2/g-C3N4 (SCN) composites, respectively. The citric acid is a co-catalyst (chelating agent) rather than a reactant during the reactive process. Besides, the intimate interface contact and ternary heterogeneous structure were established among the SnO2, g-C3N4 and diatomite. The induced positive charged surface of diatomite should be the key factor in enhancing photoactivity of the resultant SCN/DE composite, which significantly accelerated the charge separation of photogenerated electron-hole pairs as well as improved the adsorption performance towards Cr (VI). In particular, a possible reduction pathway of Cr(VI) to Cr(III) by SCN/DE composite with the assistance of citric acid was first investigated and proposed. This work provides a novel strategy for synthesizing highly efficient mineral-based photocatalysts with great promising application foreground for Cr(VI)-containing wastewater treatment.
Keywords: Citric acid; Cr(VI); Diatomite; SnO(2); g-C(3)N(4).
Copyright © 2020 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
LinkOut - more resources
Full Text Sources