Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2020 May;52(5):494-504.
doi: 10.1038/s41588-020-0611-8. Epub 2020 Apr 27.

Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility

Maria Teresa Landi  1 D Timothy Bishop  2 Stuart MacGregor  3 Mitchell J Machiela  4 Alexander J Stratigos #  5 Paola Ghiorzo #  6   7 Myriam Brossard  8 Donato Calista  9 Jiyeon Choi  4 Maria Concetta Fargnoli  10 Tongwu Zhang  4 Monica Rodolfo  11 Adam J Trower  12 Chiara Menin  13 Jacobo Martinez  14 Andreas Hadjisavvas  15 Lei Song  4 Irene Stefanaki  16 Richard Scolyer  17   18   19   20 Rose Yang  4 Alisa M Goldstein  4 Miriam Potrony  21 Katerina P Kypreou  16 Lorenza Pastorino  6   7 Paola Queirolo  22 Cristina Pellegrini  10 Laura Cattaneo  23 Matthew Zawistowski  24   25 Pol Gimenez-Xavier  21 Arantxa Rodriguez  26 Lisa Elefanti  13 Siranoush Manoukian  27 Licia Rivoltini  11 Blair H Smith  28 Maria A Loizidou  15 Laura Del Regno  29   30 Daniela Massi  31 Mario Mandala  32 Kiarash Khosrotehrani  33   34 Lars A Akslen  35   36 Christopher I Amos  37 Per A Andresen  38 Marie-Françoise Avril  39 Esther Azizi  40   41 H Peter Soyer  34   42 Veronique Bataille  43   44 Bruna Dalmasso  6   7 Lisa M Bowdler  45 Kathryn P Burdon  46 Wei V Chen  47 Veryan Codd  48   49 Jamie E Craig  50 Tadeusz Dębniak  51 Mario Falchi  43   44 Shenying Fang  52 Eitan Friedman  41 Sarah Simi  31 Pilar Galan  53 Zaida Garcia-Casado  26 Elizabeth M Gillanders  54 Scott Gordon  55 Adele Green  56   57 Nelleke A Gruis  58 Johan Hansson  59 Mark Harland  60 Jessica Harris  61 Per Helsing  62 Anjali Henders  63 Marko Hočevar  64 Veronica Höiom  59 David Hunter  65   66 Christian Ingvar  67 Rajiv Kumar  68 Julie Lang  69 G Mark Lathrop  70 Jeffrey E Lee  52 Xin Li  71 Jan Lubiński  72 Rona M Mackie  69   73 Maryrose Malt  56 Josep Malvehy  21 Kerrie McAloney  55 Hamida Mohamdi  8 Anders Molven  36   74 Eric K Moses  75 Rachel E Neale  76 Srdjan Novaković  77 Dale R Nyholt  55   78 Håkan Olsson  79   80 Nicholas Orr  81 Lars G Fritsche  82 Joan Anton Puig-Butille  83 Abrar A Qureshi  84 Graham L Radford-Smith  85   86   87 Juliette Randerson-Moor  60 Celia Requena  26 Casey Rowe  33 Nilesh J Samani  48   49 Marianna Sanna  43   44 Dirk Schadendorf  88   89 Hans-Joachim Schulze  90 Lisa A Simms  85 Mark Smithers  91   92 Fengju Song  93 Anthony J Swerdlow  94   95 Nienke van der Stoep  96 Nicole A Kukutsch  58 Alessia Visconti  43   44 Leanne Wallace  63 Sarah V Ward  97   98 Lawrie Wheeler  61 Richard A Sturm  42 Amy Hutchinson  4   99 Kristine Jones  4   99 Michael Malasky  4   99 Aurelie Vogt  4   99 Weiyin Zhou  4   99 Karen A Pooley  100 David E Elder  101 Jiali Han  71 Belynda Hicks  4   99 Nicholas K Hayward  102 Peter A Kanetsky  103 Chad Brummett  104 Grant W Montgomery  63 Catherine M Olsen  105 Caroline Hayward  106 Alison M Dunning  107 Nicholas G Martin  55 Evangelos Evangelou  108   109 Graham J Mann  17   110   111 Georgina Long  17   112 Paul D P Pharoah  107 Douglas F Easton  100 Jennifer H Barrett  12 Anne E Cust  17   113 Goncalo Abecasis  114 David L Duffy  42   55 David C Whiteman  105 Helen Gogas  115 Arcangela De Nicolo  116 Margaret A Tucker  4 Julia A Newton-Bishop  60 GenoMEL ConsortiumQ-MEGA and QTWIN InvestigatorsATHENS Melanoma Study Group23andMeSDH Study GroupIBD InvestigatorsEssen-Heidelberg InvestigatorsAMFS InvestigatorsMelaNostrum ConsortiumKetty Peris  29   30 Stephen J Chanock  4 Florence Demenais  8 Kevin M Brown #  4 Susana Puig #  21 Eduardo Nagore #  26 Jianxin Shi  4 Mark M Iles  117 Matthew H Law  118
Affiliations
Meta-Analysis

Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility

Maria Teresa Landi et al. Nat Genet. 2020 May.

Abstract

Most genetic susceptibility to cutaneous melanoma remains to be discovered. Meta-analysis genome-wide association study (GWAS) of 36,760 cases of melanoma (67% newly genotyped) and 375,188 controls identified 54 significant (P < 5 × 10-8) loci with 68 independent single nucleotide polymorphisms. Analysis of risk estimates across geographical regions and host factors suggests the acral melanoma subtype is uniquely unrelated to pigmentation. Combining this meta-analysis with GWAS of nevus count and hair color, and transcriptome association approaches, uncovered 31 potential secondary loci for a total of 85 cutaneous melanoma susceptibility loci. These findings provide insights into cutaneous melanoma genetic architecture, reinforcing the importance of nevogenesis, pigmentation and telomere maintenance, together with identifying potential new pathways for cutaneous melanoma pathogenesis.

PubMed Disclaimer

Figures

Extended Data Fig. 1
Extended Data Fig. 1. Quantile-Quantile plot of total CM meta-analysis.
Quantile-quantile plots of negative log10 two sided P-value derived from a fixed-effects inverse-variance weighted meta-analysis of log(OR) effect-sizes derived from the logistic regression GWAS listed in Supplementary Table 1. All confirmed and self-report cases are included, with a total sample size of 36,760 melanoma cases and 375,188 controls.
Extended Data Fig. 2
Extended Data Fig. 2. Manhattan plots of melanoma risk loci from total and confirmed-only GWAS-meta-analyses.
Negative log10 two sided P-value derived from a fixed-effects inverse-variance weighted meta-analysis of log(OR) effect-sizes derived from the logistic regression GWAS (y-axis) are plotted by their chromosome position. The confirmed-only analysis included 30,134 cases with histopathologically confirmed CM, and 81,415 controls. The total CM meta-analysis includes all confirmed and self-report cases, with a total sample size of 36,760 CM cases and 375,188 controls. Multiple-testing corrected genome-wide significance threshold was P<5×10−8. We display in order the total CM meta-analysis without limiting the y-axis; the pathologically confirmed CM cases only meta-analysis with the y-axis limited to 1×10−25 and without a limit to more clearly display loci other than MC1R.
Extended Data Fig. 3
Extended Data Fig. 3. Quantile-Quantile plot of confirmed-only CM meta-analysis.
Quantile-quantile plots of negative log10 two sided P-value derived from a fixed-effects inverse-variance weighted meta-analysis of log(OR) effect-sizes derived from the logistic regression GWAS listed in Supplementary Table 1. Only cases with histopathologically confirmed CM are included, with a total sample size of 30,134 melanoma cases and 81,415 controls.
Extended Data Fig. 4
Extended Data Fig. 4. Distribution of pigmentation polygenic risk scores across melanoma histological subtypes.
The figure shows whether PRS defined based on SNPs associated with hair colour differ across CM histological types (Online Methods; SSM: superficial spreading melanoma; NM: nodular melanoma; LM: lentigo melanoma; Acral: acral lentiginous melanoma). The higher the PRS the lighter the hair colour. When comparing subtype 1 vs. subtype 2, we report the effect size for the linear regression of PRS on subtype 1, including study and principal components as covariates to control for population stratification. The regression coefficient, 95% confidence interval, and statistical significance are shown. The positive beta indicates the PRS is higher in subtype 2 (e.g., non-acral melanomas). This analysis included 9828 SSM, 2137 NM, 900 LM, 353 acral melanoma cases and 44676 controls. Two-sided t-statistic was used for testing significance. P-values reported were not adjusted for multiple comparison.
Extended Data Fig. 5
Extended Data Fig. 5. LD score regression plots.
LD score regression was performed for the top 4000 (A) 2000 (B) and 1000 (C) tissue-specific genes from melanocyte and GTEx tissue types (v7 datasets), to assess the enrichment of melanoma heritability in these genomic regions using summary statistics from Total CM GWAS meta-analysis. The level of enrichment and P-values are shown, with an FDR = 0.05 cutoff marked as a dashed horizontal line (See Online Methods for statistical test). Tissue categories are color-coded, and a subset of top individual tissue types are shown on the plot. Tissue types from “Skin” category including melanocytes are highlighted in magenta.
Extended Data Fig. 6
Extended Data Fig. 6. Effect sizes for confirmed-only meta-analysis versus UKBB self-report set
For each independent genome-wide significant (P<5×10−8) lead SNP from the confirmed only meta-analysis (30,134 melanoma cases and 81,415 controls), we plot on the Y-axis UK Biobank self-report GWAS (UKBB SR) log(OR) and standard error from a logistic regression GWAS (1,802 self-report CM cases and 7,208 controls) and on the X-axis we plot the log(OR) and standard error from a fixed-effects inverse-variance weighted meta-analysis of log(OR) effect-sizes derived from the logistic regression GWAS for confirmed melanoma cases listed in Supplementary Table 1. We also report the r2 correlation from the linear regression of UKBB SR log(OR) on the confirmed met-analysis estimates, weighted by their standard error.
Figure 1.
Figure 1.. Manhattan plot for the total cutaneous melanoma meta-analysis.
−log10 of two-sided P-values for SNPs derived from a fixed-effects inverse variance weighted meta-analysis of logistic regression GWAS (Y-axis) plotted against SNP chromosome positions for the total meta-analysis (36,760 melanoma cases and 375,188 controls; for full details of analysis and covariates included see the Online Methods). The y-axis is limited to −log10(1×10−25) to truncate strong signals at loci such as MC1R and ASIP. The full plot is displayed in Extended Data Figure 2. To account for multiple testing, SNPs with a P-value less than 5×10−8 are deemed significant.
Figure 2.
Figure 2.. Overlap of loci identified by primary and secondary analyses.
Loci identified in the total cutaneous melanoma meta-analysis (CM, green, Supplementary Table 3), the pleiotropic analysis with nevus count (CMnev, blue, Supplementary Table 9) and hair color (CMpig, red, Supplementary Table 10), melanocyte TWAS (TWASmel, yellow, Supplementary Table 10), and TWAS using the expression of three skin tissues (TWAS3skin, orange, Supplementary Table 12).

References

    1. Karimkhani C et al. The global burden of melanoma: results from the Global Burden of Disease Study 2015. British Journal of Dermatology 177, 134–140 (2017). - PMC - PubMed
    1. Secretan B et al. WHO International Agency for Research on Cancer Monograph Working Group A review of human carcinogens—Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 10, 1033–1034 (2009). - PubMed
    1. Ford D et al. Risk of cutaneous melanoma associated with a family history of the disease. Int. J. Cancer 62, 377–381 (1995). - PubMed
    1. Olsen CM, Carroll HJ & Whiteman DC Familial melanoma: a meta-analysis and estimates of attributable fraction. Cancer Epidemiol. Biomarkers Prev 19, 65–73 (2010). - PubMed
    1. Olsen CM, Carroll HJ & Whiteman DC Estimating the attributable fraction for melanoma: a meta-analysis of pigmentary characteristics and freckling. Int. J. Cancer 127, 2430–2445 (2010). - PubMed

Methods References

    1. Purcell S et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet 81, 559–575 (2007). - PMC - PubMed
    1. Chang CC et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015). - PMC - PubMed
    1. Das S et al. Next-generation genotype imputation service and methods. Nat. Genet 48, 1284–1287 (2016). - PMC - PubMed
    1. DerSimonian R & Laird N Meta-analysis in clinical trials. Control. Clin. Trials 7, 177–188 (1986). - PubMed
    1. Machiela MJ & Chanock SJ LDassoc: an online tool for interactively exploring genome-wide association study results and prioritizing variants for functional investigation. Bioinformatics 34, 887–889 (2018). - PMC - PubMed

Publication types