Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun:135:109846.
doi: 10.1016/j.chaos.2020.109846. Epub 2020 Apr 27.

Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan

Affiliations

Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan

Faïçal Ndaïrou et al. Chaos Solitons Fractals. 2020 Jun.

Erratum in

Abstract

We propose a compartmental mathematical model for the spread of the COVID-19 disease with special focus on the transmissibility of super-spreaders individuals. We compute the basic reproduction number threshold, we study the local stability of the disease free equilibrium in terms of the basic reproduction number, and we investigate the sensitivity of the model with respect to the variation of each one of its parameters. Numerical simulations show the suitability of the proposed COVID-19 model for the outbreak that occurred in Wuhan, China.

Keywords: 34D05; 92D30; Basic reproduction number; Mathematical modeling of COVID-19 pandemic; Numerical simulations; Sensitivity analysis; Stability; Wuhan case study.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Figures

Fig. 1
Fig. 1
Flowchart of model (1).
Fig. 2
Fig. 2
Number of confirmed cases per day. The green line corresponds to the real data obtained from reports , , while the black line (I+P+H) has been obtained by solving numerically the system of ordinary differential Eq. (1), by using the Matlab code ode45. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3
Fig. 3
Number of confirmed deaths per day. The red line corresponds to the real data obtained from reports , , while the black line has been obtained by solving numerically, using the Matlab code ode45, our system of ordinary differential Eq. (1) to derive D(t) given in (2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

References

    1. Djordjevic J., Silva C.J., Torres D.F.M. A stochastic SICA epidemic model for HIV transmission. Appl Math Lett. 2018;84:168–175. doi: 10.1016/j.aml.2018.05.005. - DOI
    1. Ndaïrou F., Area I., Nieto J.J., Silva C.J., Torres D.F.M. Mathematical modeling of Zika disease in pregnant women and newborns with microcephaly in Brazil. Math Methods Appl Sci. 2018;41:8929–8941. doi: 10.1002/mma.4702. - DOI
    1. Rachah A., Torres D.F.M. Dynamics and optimal control of Ebola transmission. Math Comput Sci. 2016;10:331–342. doi: 10.1007/s11786-016-0268-y. - DOI
    1. Brauer F., Castillo-Chavez C., Feng Z. Springer-Verlag; New York: 2019. Mathematical models in epidemiology.
    1. COVID-19 Coronavirus Pandemic. 2020. https://www.worldometers.info/coronavirus/repro, Accessed March 26.

LinkOut - more resources