Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr;35(4):1844-1850.
doi: 10.1007/s00464-020-07586-5. Epub 2020 Apr 27.

Hyperspectral enhanced reality (HYPER) for anatomical liver resection

Affiliations

Hyperspectral enhanced reality (HYPER) for anatomical liver resection

Takeshi Urade et al. Surg Endosc. 2021 Apr.

Abstract

Background: Clinical evaluation of the demarcation line separating ischemic from non-ischemic liver parenchyma may be challenging. Hyperspectral imaging (HSI) is a noninvasive imaging modality, which combines a camera with a spectroscope and allows quantitative imaging of tissue oxygenation. Our group developed a software to overlay HSI images onto the operative field, obtaining HSI-based enhanced reality (HYPER). The aim of the present study was to evaluate the accuracy of HYPER to identify the demarcation line after a left vascular inflow occlusion during an anatomical left hepatectomy.

Materials and methods: In the porcine model (n = 3), the left branches of the hepatic pedicle were ligated. Before and after vascular occlusion, HSI images based on tissue oxygenation (StO2), obtained through the Near-Infrared index (NIR index), were regularly acquired and superimposed onto RGB video. The demarcation line was marked on the liver surface with electrocautery according to HYPER. Local lactates were measured on blood samples from the liver surface in both ischemic and perfused segments using a strip-based device. At the same areas, confocal endomicroscopy was performed.

Results: After ligation, HSI demonstrated a significantly lower oxygenation (NIR index) in the left medial lobe (LML) (0.27% ± 0.21) when compared to the right medial lobe (RML) (58.60% ± 12.08; p = 0.0015). Capillary lactates were significantly higher (3.07 mmol/L ± 0.84 vs. 1.33 ± 0.71 mmol/L; p = 0.0356) in the LML versus RML, respectively. Concordantly, confocal videos demonstrated the absence of blood flow in the LML and normal perfusion in the RML.

Conclusions: HYPER has made it possible to correctly identify the demarcation line and quantify surface liver oxygenation. HYPER could be an intraoperative tool to guide perfusion-based demarcation line assessment and segmentation.

Keywords: Enhanced reality; Hepatectomy; Hyperspectral imaging; Image-guided surgery.

PubMed Disclaimer

References

    1. Makuuchi M, Hasegawa H, Yamazaki S (1985) Ultrasonically guided subsegmentectomy. Surg Gynecol Obstet 161:346–350 - PubMed
    1. Takasaki K (1998) Glissonean pedicle transection method for hepatic resection: a new concept of liver segmentation. J Hepatobiliary Pancreat Surg 5:286–291 - DOI
    1. Inoue Y, Arita J, Sakamoto T, Ono Y, Takahashi M, Takahashi Y, Kokudo N, Saiura A (2015) Anatomical liver resections guided by 3-dimensional parenchymal staining using fusion indocyanine green fluorescence imaging. Ann Surg 262:105–111 - DOI
    1. Aoki T, Koizumi T, Mansour DA, Fujimori A, Kusano T, Matsuda K, Tashiro Y, Watanabe M, Otsuka K, Murakami M (2020) Ultrasound-guided preoperative positive percutaneous indocyanine green fluorescence staining for laparoscopic anatomical liver resection. J Am Coll Surg 230:e7–e12 - DOI
    1. Ishizawa T, Zuker NB, Kokudo N, Gayet B (2012) Positive and negative staining of hepatic segments by use of fluorescent imaging techniques during laparoscopic hepatectomy. Arch Surg 147:393–394 - DOI

Publication types

LinkOut - more resources