Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020;23(8):740-756.
doi: 10.2174/1386207323666200428114823.

Variable Screening for Near Infrared (NIR) Spectroscopy Data Based on Ridge Partial Least Squares Regression

Affiliations
Review

Variable Screening for Near Infrared (NIR) Spectroscopy Data Based on Ridge Partial Least Squares Regression

Naifei Zhao et al. Comb Chem High Throughput Screen. 2020.

Abstract

Aim and objective: Near Infrared (NIR) spectroscopy data are featured by few dozen to many thousands of samples and highly correlated variables. Quantitative analysis of such data usually requires a combination of analytical methods with variable selection or screening methods. Commonly-used variable screening methods fail to recover the true model when (i) some of the variables are highly correlated, and (ii) the sample size is less than the number of relevant variables. In these cases, Partial Least Squares (PLS) regression based approaches can be useful alternatives.

Materials and methods: In this research, a fast variable screening strategy, namely the preconditioned screening for ridge partial least squares regression (PSRPLS), is proposed for modelling NIR spectroscopy data with high-dimensional and highly correlated covariates. Under rather mild assumptions, we prove that using Puffer transformation, the proposed approach successfully transforms the problem of variable screening with highly correlated predictor variables to that of weakly correlated covariates with less extra computational effort.

Results: We show that our proposed method leads to theoretically consistent model selection results. Four simulation studies and two real examples are then analyzed to illustrate the effectiveness of the proposed approach.

Conclusion: By introducing Puffer transformation, high correlation problem can be mitigated using the PSRPLS procedure we construct. By employing RPLS regression to our approach, it can be made more simple and computational efficient to cope with the situation where model size is larger than the sample size while maintaining a high precision prediction.

Keywords: Puffer transformation; near infrared (NIR) spectroscopy data; preconditioning; ridge partial least squares regression; sure independence screening (SIS); variable screening.

PubMed Disclaimer

Publication types

LinkOut - more resources