Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2020 Jun;21(6):543-549.
doi: 10.1097/PCC.0000000000002278.

Implementation and Early Evaluation of a Quantitative Electroencephalography Program for Seizure Detection in the PICU

Affiliations
Observational Study

Implementation and Early Evaluation of a Quantitative Electroencephalography Program for Seizure Detection in the PICU

Tracey Rowberry et al. Pediatr Crit Care Med. 2020 Jun.

Abstract

Objectives: To describe implementation and early evaluation of using quantitative electroencephalography for electrographic seizure detection by PICU clinician staff.

Design: Prospective observational study of electrographic seizure detection by PICU clinicians in patients monitored with quantitative electroencephalography. Quantitative electroencephalography program implementation included a continuous education and training package. Continuous quantitative electroencephalography monitoring consisted of two-channel amplitude-integrated electroencephalography, color density spectral array, and raw-electroencephalography.

Setting: PICU.

Patients: Children less than 18 years old admitted to the PICU during the 14-month study period and deemed at risk of electrographic seizure.

Interventions: None.

Measurements and main results: Real time electrographic seizure detection by a PICU team was analyzed for diagnostic accuracy and promptness, against electrographic seizure identification by a trained neurophysiologist, retrospectively reading the same quantitative electroencephalography and blinded to patient details. One-hundred one of 1,510 consecutive admissions (6.7%) during the study period underwent quantitative electroencephalography monitoring. Status epilepticus (35%) and suspected hypoxic-ischemic injury (32%) were the most common indications for quantitative electroencephalography. Electrographic seizure was diagnosed by the neurophysiologist in 12% (n = 12) of the cohort. PICU clinicians correctly diagnosed all 12 patients (100% sensitivity and negative predictive value). An additional eleven patients had a false-positive diagnosis of electrographic seizure (false-positive rate = 52% [31-73%]) leading to a specificity of 88% (79-94%). Median time to detect seizures was 25 minutes (5-218 min). Delayed recognition of electrographic seizure (> 1 hr from onset) occurred in five patients (5/12, 42%).

Conclusions: Early evaluation of quantitative electroencephalography program to detect electrographic seizure by PICU clinicians suggested good sensitivity for electrographic seizure detection. However, the high false-positive rate is a challenge. Ongoing work is needed to reduce the false positive diagnoses and avoid electrographic seizure detection delays. A comprehensive training program and regular refresher updates for clinical staff are key components of the program.

PubMed Disclaimer

Comment in

Publication types