Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jun;26(3):273-280.
doi: 10.1097/MCC.0000000000000725.

Automated quantification of tissue red blood cell perfusion as a new resuscitation target

Affiliations
Review

Automated quantification of tissue red blood cell perfusion as a new resuscitation target

Matthias P Hilty et al. Curr Opin Crit Care. 2020 Jun.

Abstract

Purpose of review: Identification of insufficient tissue perfusion is fundamental to recognizing circulatory shock in critically ill patients, and the primary target to restore adequate oxygen delivery. However, the concept of tissue perfusion remains ill-defined and out-of-reach for clinicians as point-of-care resuscitation target. Even though handheld vital microscopy (HVM) provides the technical prerequisites to collect information on tissue perfusion in the sublingual microcirculation, challenges in image analysis prevent quantification of tissue perfusion and manual analysis steps prohibit point-of-care application. The present review aims to discuss recent advances in algorithm-based HVM analysis and the physiological basis of tissue perfusion-based resuscitation parameters.

Recent findings: Advanced computer vision algorithm such as MicroTools independently quantify microcirculatory diffusion and convection capacity by HVM and provide direct insight into tissue perfusion, leading to our formulation a functional parameter, tissue red blood cell (RBC) perfusion (tRBCp). Its definition is discussed in terms of the physiology of oxygen transport to the tissue and its expected effect as a point-of-care resuscitation target. Further refinements to microcirculatory monitoring include multiwavelength HVM techniques and maximal recruitable microcirculatory diffusion and convection capacity.

Summary: tRBCp as measured using algorithm-based HVM analysis with an automated software called MicroTools, represents a promising candidate to assess microcirculatory delivery of oxygen for microcirculation-based resuscitation in critically ill patients at the point-of-care.

PubMed Disclaimer

References

    1. Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014; 40:1795–1815.
    1. Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013; 39:165–228.
    1. Yealy DM, Kellum JA, Huang DT, et al. ProCESS Investigators. A randomized trial of protocol-based care for early septic shock. N Engl J Med 2014; 370:1683–1693.
    1. Peake SL, Delaney A, Bailey M, et al. ARISE Investigators, ANZICSClinical Trials Group. Goal-directed resuscitation for patients with early septic shock. N Engl J Med 2014; 371:1496–1506.
    1. Mouncey PR, Osborn TM, Power GS, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 2015; 372:1301–1311.