Fundamental sex differences in morphine withdrawal-induced neuronal plasticity
- PMID: 32345917
- DOI: 10.1097/j.pain.0000000000001901
Fundamental sex differences in morphine withdrawal-induced neuronal plasticity
Abstract
Withdrawal from systemic opioids can induce long-term potentiation (LTP) at spinal C-fibre synapses ("opioid-withdrawal-LTP"). This is considered to be a cellular mechanism underlying opioid withdrawal-induced hyperalgesia, which is a major symptom of the opioid withdrawal syndrome. Opioids can activate glial cells leading to the release of proinflammatory mediators. These may influence synaptic plasticity and could thus contribute to opioid-withdrawal-LTP. Here, we report a sexual dimorphism in the mechanisms of morphine-withdrawal-LTP in adult rats. We recorded C-fibre-evoked field potentials in the spinal cord dorsal horn from deeply anaesthetised male and female rats. In both sexes, we induced a robust LTP through withdrawal from systemic morphine infusion (8 mg·kg-1 bolus, followed by a 1-hour infusion at a rate of 14 mg·kg-1·h-1). This paradigm also induced mechanical hypersensitivity of similar magnitude in both sexes. In male rats, systemic but not spinal application of (-)naloxone blocked the induction of morphine-withdrawal-LTP, suggesting the involvement of descending pronociceptive pathways. Furthermore, we showed that in male rats, the induction of morphine-withdrawal-LTP required the activation of spinal astrocytes and the release of the proinflammatory cytokines tumour necrosis factor and interleukin-1. In striking contrast, in female rats, the induction of morphine-withdrawal-LTP was independent of spinal glial cells. Instead, blocking µ-opioid receptors in the spinal cord was sufficient to prevent a facilitation of synaptic strength. Our study revealed fundamental sex differences in the mechanisms underlying morphine-withdrawal-LTP at C-fibre synapses: supraspinal and gliogenic mechanisms in males and a spinal, glial cell-independent mechanism in females.
Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Association for the Study of Pain.
References
-
- Angst MS, Clark JD. Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology 2006;104:570–87.
-
- Arout CA, Caldwell M, Rossi G, Kest B. Spinal and supraspinal N-methyl-D-aspartate and melanocortin-1 receptors contribute to a qualitative sex difference in morphine-induced hyperalgesia. Physiol Behav 2015;147:364–72.
-
- Averitt DL, Eidson LN, Doyle HH, Murphy AZ. Neuronal and glial factors contributing to sex differences in opioid modulation of pain. Neuropsychopharmacology 2019;44:155–65.
-
- Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, von Zastrow M, Beattie MS, Malenka RC. Control of synaptic strength by glial TNFα. Science 2002;295:2282–5.
-
- Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. Neurosci Biobehav Rev 2011;35:565–72.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources