Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Aug 19;12(2):plz048.
doi: 10.1093/aobpla/plz048. eCollection 2020 Apr.

Advancing an interdisciplinary framework to study seed dispersal ecology

Affiliations
Review

Advancing an interdisciplinary framework to study seed dispersal ecology

Noelle G Beckman et al. AoB Plants. .

Abstract

Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant's life history and environmental variability that ultimately influences a population's ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.

Keywords: Analytical models; demography; global change; individual-based models; long-distance seed dispersal; population models; seed dispersal.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
To advance current knowledge gaps in seed dispersal ecology requires interdisciplinary collaboration in which researchers simultaneously and iteratively collect empirical data and develop mechanistic models that are integrated with statistics.
Figure 2.
Figure 2.
Examples of the differing empirical and modelling approaches used to quantify dispersal and estimate the impacts of dispersal. We suggest that studies combining multiple approaches are likely to provide greater insight into dispersal dynamics.
Figure 3.
Figure 3.
Trade-offs in model building as discussed by Levins (1966): the goals of models are to maximize generality, realism and precision but trade-offs exist such that only two of these three goals can be captured. While there is philosophical doubt on whether these trade-offs exist (Evans 2012), maximizing all three goals will likely result in a model that is intractable and impossible to analyse (Silverman 2018).
Figure 4.
Figure 4.
Examples of processes influencing abiotically and biotically dispersed seeds.

References

    1. Adler FR, Muller-Landau HC. 2005. When do localized natural enemies increase species richness? Ecology Letters 8:438–447.
    1. Agrawal AA. 1999. Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723.
    1. Agrawal AA, Ackerly DD, Adler F, Arnold AE, Cáceres C, Doak DF, Post E, Hudson PJ, Maron J, Mooney KA, Power M, Schemske D, Stachowicz J, Strauss S, Turner MG, Werner E. 2007. Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment 5:145–152.
    1. Allan BM, Nimmo DG, Ierodiaconou D, VanDerWal J, Koh LP, Ritchie EG. 2018. Futurecasting ecological research: the rise of technoecology. Ecosphere 9:e02163.
    1. Alsos IG, Ehrich D, Eidesen PB, Solstad H, Westergaard KB, Schonswetter P, Tribsch A, Birkeland S, Elven R, Brochmann C. 2015. Long-distance plant dispersal to North Atlantic islands: colonization routes and founder effect. AoB Plants 7:plv036; doi:10.1093/aobpla/plv036. - DOI - PMC - PubMed