Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 15:687:108387.
doi: 10.1016/j.abb.2020.108387. Epub 2020 Apr 26.

Omega-3 fatty acids protect against acetaminophen-induced hepatic and renal toxicity in rats through HO-1-Nrf2-BACH1 pathway

Affiliations

Omega-3 fatty acids protect against acetaminophen-induced hepatic and renal toxicity in rats through HO-1-Nrf2-BACH1 pathway

Salma M Eraky et al. Arch Biochem Biophys. .

Abstract

Although acetaminophen (APAP) is a commonly used analgesic antipyretic drug, hepatotoxicity and nephrotoxicity are common after the overdose. The main mechanism of APAP toxicity is oxidative stress based. Stress may induce the production of heme oxygenase 1 (HO)-1 which is regulated by interleukin (IL)-10 and inhibit the production of tumor necrosis factor-alpha (TNF-α). HO-1 expression is further regulated by nuclear factor erythroid 2-related factor 2 (Nrf2) and the transcription factor BTB and CNC homology 1 (BACH1). Drug-induced toxicity can be relieved by several natural products, which are preferred due to their dietary nature and less adverse reactions. Of these natural products, omega-3 (ω-3) fatty acids are known for anti-inflammatory and antioxidant actions. However, effects of ω-3fatty acids on APAP-induced hepatic and renal toxicity are not well addressed. We designed this study to test the potential protecting actions of ω-3 fatty acids (270 mg/kg Eicosapentaenoic acid and 180 mg/kg docosahexaenoic acid, orally, for 7 days) in hepatotoxicity and nephrotoxicity induced by APAP (2 g/kg, once orally on day 7) in rats. Moreover, we focused on the molecular mechanism underlying APAP hepatotoxicity and nephrotoxicity. Pre-treatment with ω-3 fatty acids enhanced liver and kidney functions indicated by decreased serum aminotransferases activities and serum creatinine and urea concentrations. These results were further confirmed by histopathological examination. Moreover, ω-3 fatty acids showed antioxidant properties confirmed by decreased malondialdehyde level and increased total antioxidant capacity. Antioxidant Nrf2, its regulators (HO-1 and BACH1) and the anti-inflammatory cytokine (IL-10) were up-regulated by APAP administration as a compensatory mechanism and they were normalized by ω-3 fatty acids. ω-3 fatty acids showed anti-inflammatory actions through down-regulating nuclear factor kappa B (NF-ĸB) and its downstream TNF-α. Moreover, Western blot analysis showed that ω-3 fatty acids promoted Nrf2 translocation to the nucleus; BACH1 exit from the nucleus and inhibited NF-ĸB nuclear translocation. These findings suggested the protecting actions of ω-3 fatty acids against APAP-induced hepatic and renal toxicity through regulation of antioxidant Nrf2 and inflammatory NF-ĸB pathways.

Keywords: Acetaminophen; BACH1; NF-ĸB; Nrf2; Omega-3 fatty acids; Oxidative stress.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest None.

MeSH terms

LinkOut - more resources