Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 20;142(20):9152-9157.
doi: 10.1021/jacs.0c03798. Epub 2020 May 6.

Transformation Network Culminating in a Heteroleptic Cd6L6L'2 Twisted Trigonal Prism

Affiliations

Transformation Network Culminating in a Heteroleptic Cd6L6L'2 Twisted Trigonal Prism

Dawei Zhang et al. J Am Chem Soc. .

Abstract

Transformations between three-dimensional metallosupramolecular assemblies can enable switching between the different functions of these structures. Here we report a network of such transformations, based upon a subcomponent displacement strategy. The flow through this network is directed by the relative reactivities of different amines, aldehydes, and di(2-pyridyl)ketone. The network provides access to an unprecedented heteroleptic Cd6L6L'2 twisted trigonal prism. The principles underpinning this network thus allow for the design of diverse structural transformations, converting one helicate into another, a helicate into a tetrahedron, a tetrahedron into a different tetrahedron, and a tetrahedron into the new trigonal prismatic structure type. The selective conversion from one host to another also enabled the uptake of a desired guest from a mixture of guests.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Network of transformations between architectures 18, showing the X-ray crystal structures of helicate FeII2L31b (a), which is the FeII analogue of CdII2L31a, and (b) TfO3. For the crystal structures, disorder, unbound counterions, hydrogen atoms, and solvent of crystallization are omitted for clarity.
Figure 2
Figure 2
(a) Subcomponent self-assembly of Cd6L6L′28 and the aromatic region of its 1H DOSY spectrum (400 MHz, 298 K, CD3CN). The three imine peaks of 8 are marked with solid black circles (●). For a full structural assignment, see Figure S67. (b, c) Crystal structure of 8 with (b) and without (c) the two bound triflate anions. Disorder, additional counterions, peripheral R groups on the E residues, hydrogen atoms, and solvent of crystallization are omitted for clarity. Only the N atoms of the free amines are colored blue, with the rest of symmetry-equivalent ligands being colored magenta, black, and cyan. CdII centers are yellow, which are connected by yellow lines to their nearest neighbors. Average CdII–CdII distances are labeled in (a).
Figure 3
Figure 3
Schematic representation of selective uptake of either triflate or cyclohexane upon structural transformations.

References

    1. Wang W.; Wang Y. X.; Yang H. B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656–2693. 10.1039/C5CS00301F. - DOI - PubMed
    2. Zhou X. P.; Wu Y.; Li D. Polyhedral metal-imidazolate cages: control of self-assembly and cage to cage transformation. J. Am. Chem. Soc. 2013, 135, 16062–16065. 10.1021/ja4092984. - DOI - PubMed
    1. Saibil H. R.; Fenton W. A.; Clare D. K.; Horwich A. L. Structure and allostery of the chaperonin GroEL. J. Mol. Biol. 2013, 425, 1476–1487. 10.1016/j.jmb.2012.11.028. - DOI - PubMed
    2. Nussinov R. Introduction to protein ensembles and allostery. Chem. Rev. 2016, 116, 6263–6266. 10.1021/acs.chemrev.6b00283. - DOI - PubMed
    1. Carlier P. R. Threading the needle: mimicking natural toroidal catalysts. Angew. Chem., Int. Ed. 2004, 43, 2602–2605. 10.1002/anie.200301731. - DOI - PubMed
    2. Raynal M.; Ballester P.; Vidal-Ferran A.; van Leeuwen P. W. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev. 2014, 43, 1734–1787. 10.1039/C3CS60037H. - DOI - PubMed
    3. Hong C. M.; Bergman R. G.; Raymond K. N.; Toste F. D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 2018, 51, 2447–2455. 10.1021/acs.accounts.8b00328. - DOI - PubMed
    4. Zhang Q.; Tiefenbacher K. Terpene cyclization catalysed inside a self-assembled cavity. Nat. Chem. 2015, 7, 197–202. 10.1038/nchem.2181. - DOI - PubMed
    5. Galli M.; Lewis J. E.; Goldup S. M. A stimuli-responsive rotaxane-gold catalyst: regulation of activity and diastereoselectivity. Angew. Chem., Int. Ed. 2015, 54, 13545–13549. 10.1002/anie.201505464. - DOI - PMC - PubMed
    6. Eichstaedt K.; Jaramillo-Garcia J.; Leigh D. A.; Marcos V.; Pisano S.; Singleton T. A. Switching between anion-binding catalysis and aminocatalysis with a rotaxane dual-function catalyst. J. Am. Chem. Soc. 2017, 139, 9376–9381. 10.1021/jacs.7b04955. - DOI - PubMed
    1. Choi S.; Mukhopadhyay R. D.; Kim Y.; Hwang I. C.; Hwang W.; Ghosh S. K.; Baek K.; Kim K. Fuel-driven transient crystallization of a cucurbit[8]uril-based host-guest complex. Angew. Chem., Int. Ed. 2019, 58, 16850–16853. 10.1002/anie.201910161. - DOI - PubMed
    2. Kang S. I.; Lee M.; Lee D. Weak links to differentiate weak bonds: size-selective response of π-conjugated macrocycle gels to ammonium ions. J. Am. Chem. Soc. 2019, 141, 5980–5986. 10.1021/jacs.9b01002. - DOI - PubMed
    3. Hasell T.; Cooper A. I. Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 2016, 1, 16053.10.1038/natrevmats.2016.53. - DOI
    4. Frischmann P. D.; MacLachlan M. J. Metallocavitands: an emerging class of functional multimetallic host molecules. Chem. Soc. Rev. 2013, 42, 871–890. 10.1039/C2CS35337G. - DOI - PubMed
    5. Yang H.; Yuan B.; Zhang X.; Scherman O. A. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 2014, 47, 2106–2115. 10.1021/ar500105t. - DOI - PubMed
    6. Custelcean R. Anion encapsulation and dynamics in self-assembled coordination cages. Chem. Soc. Rev. 2014, 43, 1813–1824. 10.1039/C3CS60371G. - DOI - PubMed
    7. Foianesi-Takeshige L. H.; Takahashi S.; Tateishi T.; Sekine R.; Okazawa A.; Zhu W.; Kojima T.; Harano K.; Nakamura E.; Sato H.; Hiraoka S. Bifurcation of self-assembly pathways to sheet or cage controlled by kinetic template effect. Commun. Chem. 2019, 2, 128.10.1038/s42004-019-0232-2. - DOI
    8. Wang S.; Sawada T.; Ohara K.; Yamaguchi K.; Fujita M. Capsule-capsule conversion by guest encapsulation. Angew. Chem., Int. Ed. 2016, 55, 2063–2066. 10.1002/anie.201509278. - DOI - PubMed
    9. Zhiquan L.; Xie H.; Border S. E.; Gallucci J.; Pavlovic R. Z.; Badjic J. D. A stimuli-responsive molecular capsule with switchable dynamics, chirality, and encapsulation characteristics. J. Am. Chem. Soc. 2018, 140, 11091–11100. 10.1021/jacs.8b06190. - DOI - PubMed
    10. Liu Y.; Zhao W.; Chen C. H.; Flood A. H. Chloride capture using a C-H hydrogen-bonding cage. Science 2019, 365, 159–161. - PubMed
    1. Kishi N.; Akita M.; Kamiya M.; Hayashi S.; Hsu H. F.; Yoshizawa M. Facile catch and release of fullerenes using a photoresponsive molecular tube. J. Am. Chem. Soc. 2013, 135, 12976–12979. 10.1021/ja406893y. - DOI - PubMed
    2. Dube H.; Ajami D.; Rebek J. Jr. Photochemical control of reversible encapsulation. Angew. Chem., Int. Ed. 2010, 49, 3192–3195. 10.1002/anie.201000876. - DOI - PubMed
    3. Han M.; Michel R.; He B.; Chen Y. S.; Stalke D.; John M.; Clever G. H. Light-triggered guest uptake and release by a photochromic coordination cage. Angew. Chem., Int. Ed. 2013, 52, 1319–1323. 10.1002/anie.201207373. - DOI - PubMed
    4. Kim T. Y.; Vasdev R. A. S.; Preston D.; Crowley J. D. Strategies for reversible guest uptake and release from metallosupramolecular architectures. Chem. - Eur. J. 2018, 24, 14878–14890. 10.1002/chem.201802081. - DOI - PubMed
    5. Samanta S. K.; Quigley J.; Vinciguerra B.; Briken V.; Isaacs L. Cucurbit[7]uril enables multi-stimuli-responsive release from the self-assembled hydrophobic phase of a metal organic polyhedron. J. Am. Chem. Soc. 2017, 139, 9066–9074. 10.1021/jacs.7b05154. - DOI - PMC - PubMed
    6. Wu H.; Chen Y.; Zhang L.; Anamimoghadam O.; Shen D.; Liu Z.; Cai K.; Pezzato C.; Stern C. L.; Liu Y.; Stoddart J. F. A dynamic tetracationic macrocycle exhibiting photoswitchable molecular encapsulation. J. Am. Chem. Soc. 2019, 141, 1280–1289. 10.1021/jacs.8b10526. - DOI - PubMed

Publication types