Transformation Network Culminating in a Heteroleptic Cd6L6L'2 Twisted Trigonal Prism
- PMID: 32357009
- PMCID: PMC7243256
- DOI: 10.1021/jacs.0c03798
Transformation Network Culminating in a Heteroleptic Cd6L6L'2 Twisted Trigonal Prism
Abstract
Transformations between three-dimensional metallosupramolecular assemblies can enable switching between the different functions of these structures. Here we report a network of such transformations, based upon a subcomponent displacement strategy. The flow through this network is directed by the relative reactivities of different amines, aldehydes, and di(2-pyridyl)ketone. The network provides access to an unprecedented heteroleptic Cd6L6L'2 twisted trigonal prism. The principles underpinning this network thus allow for the design of diverse structural transformations, converting one helicate into another, a helicate into a tetrahedron, a tetrahedron into a different tetrahedron, and a tetrahedron into the new trigonal prismatic structure type. The selective conversion from one host to another also enabled the uptake of a desired guest from a mixture of guests.
Conflict of interest statement
The authors declare no competing financial interest.
Figures



References
-
- Wang W.; Wang Y. X.; Yang H. B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656–2693. 10.1039/C5CS00301F. - DOI - PubMed
- Zhou X. P.; Wu Y.; Li D. Polyhedral metal-imidazolate cages: control of self-assembly and cage to cage transformation. J. Am. Chem. Soc. 2013, 135, 16062–16065. 10.1021/ja4092984. - DOI - PubMed
-
- Saibil H. R.; Fenton W. A.; Clare D. K.; Horwich A. L. Structure and allostery of the chaperonin GroEL. J. Mol. Biol. 2013, 425, 1476–1487. 10.1016/j.jmb.2012.11.028. - DOI - PubMed
- Nussinov R. Introduction to protein ensembles and allostery. Chem. Rev. 2016, 116, 6263–6266. 10.1021/acs.chemrev.6b00283. - DOI - PubMed
-
- Carlier P. R. Threading the needle: mimicking natural toroidal catalysts. Angew. Chem., Int. Ed. 2004, 43, 2602–2605. 10.1002/anie.200301731. - DOI - PubMed
- Raynal M.; Ballester P.; Vidal-Ferran A.; van Leeuwen P. W. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev. 2014, 43, 1734–1787. 10.1039/C3CS60037H. - DOI - PubMed
- Hong C. M.; Bergman R. G.; Raymond K. N.; Toste F. D. Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 2018, 51, 2447–2455. 10.1021/acs.accounts.8b00328. - DOI - PubMed
- Zhang Q.; Tiefenbacher K. Terpene cyclization catalysed inside a self-assembled cavity. Nat. Chem. 2015, 7, 197–202. 10.1038/nchem.2181. - DOI - PubMed
- Galli M.; Lewis J. E.; Goldup S. M. A stimuli-responsive rotaxane-gold catalyst: regulation of activity and diastereoselectivity. Angew. Chem., Int. Ed. 2015, 54, 13545–13549. 10.1002/anie.201505464. - DOI - PMC - PubMed
- Eichstaedt K.; Jaramillo-Garcia J.; Leigh D. A.; Marcos V.; Pisano S.; Singleton T. A. Switching between anion-binding catalysis and aminocatalysis with a rotaxane dual-function catalyst. J. Am. Chem. Soc. 2017, 139, 9376–9381. 10.1021/jacs.7b04955. - DOI - PubMed
-
- Choi S.; Mukhopadhyay R. D.; Kim Y.; Hwang I. C.; Hwang W.; Ghosh S. K.; Baek K.; Kim K. Fuel-driven transient crystallization of a cucurbit[8]uril-based host-guest complex. Angew. Chem., Int. Ed. 2019, 58, 16850–16853. 10.1002/anie.201910161. - DOI - PubMed
- Kang S. I.; Lee M.; Lee D. Weak links to differentiate weak bonds: size-selective response of π-conjugated macrocycle gels to ammonium ions. J. Am. Chem. Soc. 2019, 141, 5980–5986. 10.1021/jacs.9b01002. - DOI - PubMed
- Hasell T.; Cooper A. I. Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 2016, 1, 16053.10.1038/natrevmats.2016.53. - DOI
- Frischmann P. D.; MacLachlan M. J. Metallocavitands: an emerging class of functional multimetallic host molecules. Chem. Soc. Rev. 2013, 42, 871–890. 10.1039/C2CS35337G. - DOI - PubMed
- Yang H.; Yuan B.; Zhang X.; Scherman O. A. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 2014, 47, 2106–2115. 10.1021/ar500105t. - DOI - PubMed
- Custelcean R. Anion encapsulation and dynamics in self-assembled coordination cages. Chem. Soc. Rev. 2014, 43, 1813–1824. 10.1039/C3CS60371G. - DOI - PubMed
- Foianesi-Takeshige L. H.; Takahashi S.; Tateishi T.; Sekine R.; Okazawa A.; Zhu W.; Kojima T.; Harano K.; Nakamura E.; Sato H.; Hiraoka S. Bifurcation of self-assembly pathways to sheet or cage controlled by kinetic template effect. Commun. Chem. 2019, 2, 128.10.1038/s42004-019-0232-2. - DOI
- Wang S.; Sawada T.; Ohara K.; Yamaguchi K.; Fujita M. Capsule-capsule conversion by guest encapsulation. Angew. Chem., Int. Ed. 2016, 55, 2063–2066. 10.1002/anie.201509278. - DOI - PubMed
- Zhiquan L.; Xie H.; Border S. E.; Gallucci J.; Pavlovic R. Z.; Badjic J. D. A stimuli-responsive molecular capsule with switchable dynamics, chirality, and encapsulation characteristics. J. Am. Chem. Soc. 2018, 140, 11091–11100. 10.1021/jacs.8b06190. - DOI - PubMed
- Liu Y.; Zhao W.; Chen C. H.; Flood A. H. Chloride capture using a C-H hydrogen-bonding cage. Science 2019, 365, 159–161. - PubMed
-
- Kishi N.; Akita M.; Kamiya M.; Hayashi S.; Hsu H. F.; Yoshizawa M. Facile catch and release of fullerenes using a photoresponsive molecular tube. J. Am. Chem. Soc. 2013, 135, 12976–12979. 10.1021/ja406893y. - DOI - PubMed
- Dube H.; Ajami D.; Rebek J. Jr. Photochemical control of reversible encapsulation. Angew. Chem., Int. Ed. 2010, 49, 3192–3195. 10.1002/anie.201000876. - DOI - PubMed
- Han M.; Michel R.; He B.; Chen Y. S.; Stalke D.; John M.; Clever G. H. Light-triggered guest uptake and release by a photochromic coordination cage. Angew. Chem., Int. Ed. 2013, 52, 1319–1323. 10.1002/anie.201207373. - DOI - PubMed
- Kim T. Y.; Vasdev R. A. S.; Preston D.; Crowley J. D. Strategies for reversible guest uptake and release from metallosupramolecular architectures. Chem. - Eur. J. 2018, 24, 14878–14890. 10.1002/chem.201802081. - DOI - PubMed
- Samanta S. K.; Quigley J.; Vinciguerra B.; Briken V.; Isaacs L. Cucurbit[7]uril enables multi-stimuli-responsive release from the self-assembled hydrophobic phase of a metal organic polyhedron. J. Am. Chem. Soc. 2017, 139, 9066–9074. 10.1021/jacs.7b05154. - DOI - PMC - PubMed
- Wu H.; Chen Y.; Zhang L.; Anamimoghadam O.; Shen D.; Liu Z.; Cai K.; Pezzato C.; Stern C. L.; Liu Y.; Stoddart J. F. A dynamic tetracationic macrocycle exhibiting photoswitchable molecular encapsulation. J. Am. Chem. Soc. 2019, 141, 1280–1289. 10.1021/jacs.8b10526. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources