Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 19;71(16):2079-2088.
doi: 10.1093/cid/ciaa538.

Clinical and Laboratory Predictors of In-hospital Mortality in Patients With Coronavirus Disease-2019: A Cohort Study in Wuhan, China

Affiliations

Clinical and Laboratory Predictors of In-hospital Mortality in Patients With Coronavirus Disease-2019: A Cohort Study in Wuhan, China

Kun Wang et al. Clin Infect Dis. .

Abstract

Background: This study aimed to develop mortality-prediction models for patients with coronavirus disease-2019 (COVID-19).

Methods: The training cohort included consecutive COVID-19 patients at the First People's Hospital of Jiangxia District in Wuhan, China, from 7 January 2020 to 11 February 2020. We selected baseline data through the stepwise Akaike information criterion and ensemble XGBoost (extreme gradient boosting) model to build mortality-prediction models. We then validated these models by randomly collected COVID-19 patients in Union Hospital, Wuhan, from 1 January 2020 to 20 February 2020.

Results: A total of 296 COVID-19 patients were enrolled in the training cohort; 19 died during hospitalization and 277 discharged from the hospital. The clinical model developed using age, history of hypertension, and coronary heart disease showed area under the curve (AUC), 0.88 (95% confidence interval [CI], .80-.95); threshold, -2.6551; sensitivity, 92.31%; specificity, 77.44%; and negative predictive value (NPV), 99.34%. The laboratory model developed using age, high-sensitivity C-reactive protein, peripheral capillary oxygen saturation, neutrophil and lymphocyte count, d-dimer, aspartate aminotransferase, and glomerular filtration rate had a significantly stronger discriminatory power than the clinical model (P = .0157), with AUC, 0.98 (95% CI, .92-.99); threshold, -2.998; sensitivity, 100.00%; specificity, 92.82%; and NPV, 100.00%. In the subsequent validation cohort (N = 44), the AUC (95% CI) was 0.83 (.68-.93) and 0.88 (.75-.96) for the clinical model and laboratory model, respectively.

Conclusions: We developed 2 predictive models for the in-hospital mortality of patients with COVID-19 in Wuhan that were validated in patients from another center.

Keywords: COVID-19; mortality; predictive model.

PubMed Disclaimer

Similar articles

Cited by

Substances