Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr;66(4):1022-1033.
doi: 10.1007/s10620-020-06267-6. Epub 2020 May 2.

Antioxidant Analogue 6-Amino-2,4,5-Trimethylpyridin-3-ol Ameliorates Experimental Colitis in Mice

Affiliations

Antioxidant Analogue 6-Amino-2,4,5-Trimethylpyridin-3-ol Ameliorates Experimental Colitis in Mice

Hoyul Lee et al. Dig Dis Sci. 2021 Apr.

Abstract

Background: Oxidative stress has been suggested to be a factor contributing to the disease severity of inflammatory bowel disease (IBD). BJ-1108, a derivative of 6-amino-2,4,5-trimethylpyridin-3-ol, is reported to significantly inhibit the generation of reactive oxygen species (ROS) in vitro. However, whether this molecule affects intestinal inflammation is largely unknown. We aimed to investigate the effect of BJ-1108 on dextran sulfate sodium (DSS)-induced experimental colitis in mice.

Methods: Colitis was induced in mice with DSS, and disease severity was estimated by evaluating body weight, colon length, histology, immune cell infiltration, and intestinal permeability. We examined the protective effects of BJ-1108 on barrier function using Caco-2 cells. Last, we estimated the impact of BJ-1108 on the phosphorylation of NF-kB, PI3K/AKT, and mitogen-activated protein kinases.

Results: Mice treated with BJ-1108 exhibited improved disease severity, as indicated by evaluations of body weight, histological scores, spleen weight, and infiltrates of T cells and macrophages. The administration of BJ-1108 inhibited the colonic mRNA expression of IL-6 and IL-1β in vivo. Additionally, BJ-1108 limited intestinal permeability and enhanced the expression of tight junction (TJ) proteins such as claudin-1 and claudin-3 in the DSS-induced colitis model. In an in vitro model using Caco-2 cells, BJ-1108 ameliorated cytokine-induced ROS generation in a dose-dependent manner and remarkably recovered barrier dysfunction as estimated by evaluating transepithelial electrical resistance and TJ protein expression. BJ-1108 suppressed the NF-kB/ERK/PI3K pathway.

Conclusions: This study demonstrated that BJ-1108 ameliorated intestinal inflammation in an experimental colitis mouse model, suggesting possible therapeutic implications for IBD.

Keywords: Antioxidant; DSS-induced colitis; Inflammatory bowel disease; Reactive oxygen species.

PubMed Disclaimer

References

    1. Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:390–407. - PubMed
    1. Tian T, Wang Z, Zhang J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev. 2017;2017:4535194. - PubMed - PMC
    1. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94:329–354. - PubMed - PMC
    1. Schwerd T, Bryant RV, Pandey S, et al. NOX1 loss-of-function genetic variants in patients with inflammatory bowel disease. Mucosal Immunol. 2018;11:562–574. - PubMed
    1. Kruidenier L, Kuiper I, van Duijn W, et al. Differential mucosal expression of three superoxide dismutase isoforms in inflammatory bowel disease. J Pathol. 2003;201:7–16. - PubMed

Publication types

MeSH terms

LinkOut - more resources