Kinetic states and modes of single large-conductance calcium-activated potassium channels in cultured rat skeletal muscle
- PMID: 3236256
- PMCID: PMC1191882
- DOI: 10.1113/jphysiol.1988.sp017195
Kinetic states and modes of single large-conductance calcium-activated potassium channels in cultured rat skeletal muscle
Abstract
1. Kinetic states and modes of a large-conductance Ca2+-activated K+ channel in excised patches of membrane from cultured rat skeletal muscle were studied with the patch clamp technique. Up to 10(6) open and shut intervals were analysed from each of seven different excised membrane patches containing a single channel. 2. Plots of the mean durations of consecutive groups of ten to fifty open and shut intervals were made to assess kinetic stability of the channel. Occasional abrupt decreases in the mean open interval duration from normal to different distinct levels, which were maintained for hundreds to thousands of consecutive intervals, indicated entry of the channel into different modes. 3. Four different kinetic modes were identified: normal mode, which included 96% of the intervals; intermediate open mode with 3.2% of the intervals; brief open mode with 0.5% of the intervals; and buzz mode with 0.1% of the intervals. The mean open interval durations were 61% of normal during the intermediate open mode, 12% of normal during the brief open mode, and 2.6% of normal during the buzz mode. 4. Most mode transitions were observed from the normal mode to one of the other modes and then back to normal. Sojourns in the normal mode lasted 5-1000 s. Sojourns in the intermediate open, brief open, and buzz modes lasted 1.5-150, 1-7, and 0.01-1 s, respectively. 5. During normal activity the distributions of interval durations were typically described by the sum of three to four exponential components for the open intervals and six to eight exponential components for the shut intervals, and this was the case for data obtained over a wide range of open channel probability resulting from different Ca2+i. These observations suggest that the channel can enter at least three to four open and six to eight shut states during normal activity. 6. The numbers of detected states for data sets of different sample sizes drawn from normal activity agreed with theoretical predictions, and were essentially independent of the segment of normal activity from which the data sets were drawn. These observations are consistent with relative stability of channel kinetics during normal activity. Detection of each additional open or shut state after the first was found to require a 3- to 10-fold increase in the number of analysed events. 7. The intermediate open mode differed from the normal mode in that the longest open component of the four normal open components was absent.
Similar articles
-
High Ca2+ concentrations induce a low activity mode and reveal Ca2(+)-independent long shut intervals in BK channels from rat muscle.J Physiol. 1996 Jun 15;493 ( Pt 3)(Pt 3):673-89. doi: 10.1113/jphysiol.1996.sp021414. J Physiol. 1996. PMID: 8799891 Free PMC article.
-
Accounting for the Ca(2+)-dependent kinetics of single large-conductance Ca(2+)-activated K+ channels in rat skeletal muscle.J Physiol. 1991 Nov;443:739-77. doi: 10.1113/jphysiol.1991.sp018861. J Physiol. 1991. PMID: 1822543 Free PMC article.
-
Quantitative description of three modes of activity of fast chloride channels from rat skeletal muscle.J Physiol. 1986 Sep;378:141-74. doi: 10.1113/jphysiol.1986.sp016212. J Physiol. 1986. PMID: 2432249 Free PMC article.
-
Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle.J Physiol. 1983 Nov;344:585-604. doi: 10.1113/jphysiol.1983.sp014957. J Physiol. 1983. PMID: 6317853 Free PMC article.
-
Voltage dependence and stability of the gating kinetics of the fast chloride channel from rat skeletal muscle.J Physiol. 1990 Jul;426:145-76. doi: 10.1113/jphysiol.1990.sp018131. J Physiol. 1990. PMID: 1700104 Free PMC article.
Cited by
-
Kinetic time constants independent of previous single-channel activity suggest Markov gating for a large conductance Ca-activated K channel.J Gen Physiol. 1989 Dec;94(6):1037-70. doi: 10.1085/jgp.94.6.1037. J Gen Physiol. 1989. PMID: 2614371 Free PMC article.
-
Coupling and cooperativity in voltage activation of a limited-state BK channel gating in saturating Ca2+.J Gen Physiol. 2010 May;135(5):461-80. doi: 10.1085/jgp.200910331. J Gen Physiol. 2010. PMID: 20421372 Free PMC article.
-
To what extent naringenin binding and membrane depolarization shape mitoBK channel gating-A machine learning approach.PLoS Comput Biol. 2022 Jul 20;18(7):e1010315. doi: 10.1371/journal.pcbi.1010315. eCollection 2022 Jul. PLoS Comput Biol. 2022. PMID: 35857767 Free PMC article.
-
Current transients associated with BK channels in human glioma cells.J Membr Biol. 2003 Jun 1;193(3):201-13. doi: 10.1007/s00232-003-2019-7. J Membr Biol. 2003. PMID: 12962281
-
Coronary Large Conductance Ca2+-Activated K+ Channel Dysfunction in Diabetes Mellitus.Front Physiol. 2021 Oct 21;12:750618. doi: 10.3389/fphys.2021.750618. eCollection 2021. Front Physiol. 2021. PMID: 34744789 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous