Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 18;59(10):7150-7157.
doi: 10.1021/acs.inorgchem.0c00615. Epub 2020 May 3.

Thiacalix[4]arene-Protected Titanium-Oxo Clusters: Influence of Ligand Conformation and Ti-S Coordination on the Visible-Light Photocatalytic Hydrogen Production

Affiliations

Thiacalix[4]arene-Protected Titanium-Oxo Clusters: Influence of Ligand Conformation and Ti-S Coordination on the Visible-Light Photocatalytic Hydrogen Production

Xin Wang et al. Inorg Chem. .

Abstract

p-tert-Butylthiacalix[4]arene (H4TC4A)-decorated tetranuclear (Ti4) and hexanuclear (Ti6) polyoxo-titanium clusters (PTCs) were synthesized in isopropyl alcohol by a low-temperature solvothermal method. The structures were determined by single-crystal X-ray diffraction, in which the ligands adopt 1,2-alternative and cone-shaped conformations, respectively. Both PTCs show UV-vis absorptions up to 600 nm with band gaps at 2.19 eV (Ti4) and 2.24 eV (Ti6), respectively. Visible-light photocatalytic H2 production for Ti4 was measured to be 73.56 μmol/(g h), which is almost 5 times of that of Ti6 (15.16 μmol/(g h)). Results of density functional theory (DFT) calculations suggested that the different Ti-S coordination modes originating from the conformational disparity of the ligands are primarily responsible for the observed different photocatalytic activities. Not only does this work provides a better understanding of the structure-property relationships in using titanium-oxo clusters for photocatalytic H2 production but it also offers a means of tuning the band gap of the catalysts by varying the conformations of the ligands.

PubMed Disclaimer

LinkOut - more resources