Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Apr 29;9(5):372.
doi: 10.3390/antiox9050372.

Do Antioxidant Vitamins Prevent Exercise-Induced Muscle Damage? A Systematic Review

Affiliations
Review

Do Antioxidant Vitamins Prevent Exercise-Induced Muscle Damage? A Systematic Review

María Martinez-Ferran et al. Antioxidants (Basel). .

Abstract

Free radicals produced during exercise play a role in modulating cell signaling pathways. High doses of antioxidants may hamper adaptations to exercise training. However, their benefits are unclear. This review aims to examine whether vitamin C (VitC) and/or vitamin E (VitE) supplementation (SUP) prevents exercise-induced muscle damage. The PubMed, Web of Science, Medline, CINAHL, and SPORTDiscus databases were searched, and 21 articles were included. Four studies examined the effects of acute VitC SUP given pre-exercise: in one study, lower CK levels post-exercise was observed; in three, no difference was recorded. In one study, acute VitE SUP reduced CK activity 1 h post-exercise in conditions of hypoxia. In three studies, chronic VitE SUP did not reduce CK activity after an exercise session. Chronic VitE SUP did not reduce creatine kinase (CK) concentrations after three strength training sessions, but it was effective after 6 days of endurance training in another study. Chronic SUP with VitC + E reduced CK activity post-exercise in two studies, but there was no such effect in four studies. Finally, three studies described the effects of chronic VitC + E SUP and long-term exercise, reporting dissimilar results. To conclude, although there is some evidence of a protective effect of VitC and/or VitE against exercise-induced muscle damage, the available data are not conclusive.

Keywords: antioxidant vitamins; muscle damage; vitamin C; vitamin E.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of literature search according to the PRISMA statement.
Figure 2
Figure 2
Risk of bias summary.

References

    1. Haida Z., Hakiman M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci. Nutr. 2019;7:1555–1563. doi: 10.1002/fsn3.1012. - DOI - PMC - PubMed
    1. Frei B. Reactive oxygen species and antioxidant vitamins: Mechanisms of action. Am. J. Med. 1994;97:5S–13S. doi: 10.1016/0002-9343(94)90292-5. discussion 22S-28S. - DOI - PubMed
    1. Kruk J., Aboul-Enein H.Y., Kladna A., Bowser J.E. Oxidative stress in biological systems and its relation with pathophysiological functions: The effect of physical activity on cellular redox homeostasis. Free Radic. Res. 2019;53:497–521. doi: 10.1080/10715762.2019.1612059. - DOI - PubMed
    1. Pingitore A., Lima G.P., Mastorci F., Quinones A., Iervasi G., Vassalle C. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition. 2015;31:916–922. doi: 10.1016/j.nut.2015.02.005. - DOI - PubMed
    1. Vina J., Sanchis-Gomar F., Martinez-Bello V., Gomez-Cabrera M.C. Exercise acts as a drug; the pharmacological benefits of exercise. Br. J. Pharmacol. 2012;167:1–12. doi: 10.1111/j.1476-5381.2012.01970.x. - DOI - PMC - PubMed