Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 28:18:9.
doi: 10.1186/s13053-020-00141-2. eCollection 2020.

Development and validation of next generation sequencing based 35-gene hereditary cancer panel

Affiliations

Development and validation of next generation sequencing based 35-gene hereditary cancer panel

Wing Chan et al. Hered Cancer Clin Pract. .

Abstract

Background: Understanding the genetic basis of cancer risk is a major international endeavor. The emergence of next-generation sequencing (NGS) in late 2000's has further accelerated the discovery of many cancer susceptibility genes. The use of targeted NGS-based multigene testing panels to provide comprehensive analysis of cancer susceptible genes has proven to be a viable option, with the accurate and robust detection of a wide range of clinically relevant variants in the targeted genes being crucial.

Methods: We have developed and validated a targeted NGS-based test for hereditary cancer risk assessment using Illumina's NGS platform by analyzing the protein-coding regions of 35 hereditary cancer genes with a bioinformatics pipeline that utilizes standard practices in the field. This 35-gene hereditary cancer panel is designed to identify germline cancer-causing mutations for 8 different cancers: breast, ovarian, prostate, uterine, colorectal, pancreatic, stomach cancers and melanoma. The panel was validated using well-characterized DNA specimens [NIGMS Human Genetic Cell Repository], where DNA had been extracted using blood of individuals whose genetic variants had been previously characterized by the 1000 Genome Project and the Coriell Catalog.

Results: The 35-gene hereditary cancer panel shows high sensitivity (99.9%) and specificity (100%) across 4820 variants including single nucleotide variants (SNVs) and small insertions and deletions (indel; up to 25 bp). The reproducibility and repeatability are 99.8 and 100%, respectively.

Conclusions: The use of targeted NGS-based multigene testing panels to provide comprehensive analysis of cancer susceptible genes has been considered a viable option. In the present study, we developed and validated a 35-gene panel for testing 8 common cancers using next-generation sequencing (NGS). The performance of our hereditary cancer panel is assessed across a board range of variants in the 35 genes to support clinical use.

Keywords: Analytical validation; Genetic testing; Hereditary cancer; Multigene panel testing; Next generation sequencing.

PubMed Disclaimer

Conflict of interest statement

Competing interestsSome authors are current or former employees of Prenetics Limited or DNAfit.

Figures

Fig. 1
Fig. 1
Exonic coverage of 35 hereditary cancer genes based on a benchmark sequencing run with 43 samples

References

    1. Stadler ZK, Schrader KA, Vijai J, Robson ME, Offit K. Cancer genomics and inherited risk. J Clin Oncol. 2014;32(7):687–698. doi: 10.1200/JCO.2013.49.7271. - DOI - PMC - PubMed
    1. Sokolenko AP, Suspitsin EN, Kuligina ES, Bizin IV, Frishman D, Imyanitov EN. Identification of novel hereditary cancer genes by whole exome sequencing. Cancer Lett. 2015;369(2):274–288. doi: 10.1016/j.canlet.2015.09.014. - DOI - PubMed
    1. Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15(9):733–747. doi: 10.1038/gim.2013.92. - DOI - PMC - PubMed
    1. 1000 Genomes Project Consortium. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi: 10.1038/nature15393. - DOI - PMC - PubMed
    1. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526(7571):75–81. doi: 10.1038/nature15394. - DOI - PMC - PubMed

LinkOut - more resources