Impacts of rat hindlimb Fndc5/irisin overexpression on muscle and adipose tissue metabolism
- PMID: 32369414
- PMCID: PMC7311674
- DOI: 10.1152/ajpendo.00034.2020
Impacts of rat hindlimb Fndc5/irisin overexpression on muscle and adipose tissue metabolism
Abstract
Myokines, such as irisin, have been purported to exert physiological effects on skeletal muscle in an autocrine/paracrine fashion. In this study, we aimed to investigate the mechanistic role of in vivo fibronectin type III domain-containing 5 (Fndc5)/irisin upregulation in muscle. Overexpression (OE) of Fndc5 in rat hindlimb muscle was achieved by in vivo electrotransfer, i.e., bilateral injections of Fndc5 harboring vectors for OE rats (n = 8) and empty vector for control rats (n = 8). Seven days later, a bolus of D2O (7.2 mL/kg) was administered via oral gavage to quantify muscle protein synthesis. After an overnight fast, on day 9, 2-deoxy-d-glucose-6-phosphate (2-DG6P; 6 mg/kg) was provided during an intraperitoneal glucose tolerance test (2 g/kg) to assess glucose handling. Animals were euthanized, musculus tibialis cranialis muscles and subcutaneous fat (inguinal) were harvested, and metabolic and molecular effects were evaluated. Muscle Fndc5 mRNA increased with OE (~2-fold; P = 0.014), leading to increased circulating irisin (1.5 ± 0.9 to 3.5 ± 1.2 ng/mL; P = 0.049). OE had no effect on protein anabolism or mitochondrial biogenesis; however, muscle glycogen was increased, along with glycogen synthase 1 gene expression (P = 0.04 and 0.02, respectively). In addition to an increase in glycogen synthase activation in OE (P = 0.03), there was a tendency toward increased glucose transporter 4 protein (P = 0.09). However, glucose uptake (accumulation of 2-DG6P) was identical. Irisin elicited no endocrine effect on mitochondrial biogenesis or uncoupling proteins in white adipose tissue. Hindlimb overexpression led to physiological increases in Fndc5/irisin. However, our data indicate limited short-term impacts of irisin in relation to muscle anabolism, mitochondrial biogenesis, glucose uptake, or adipose remodeling.
Keywords: FNDC5; glucose metabolism; irisin; muscle; overexpression.
Conflict of interest statement
No conflicts of interest, financial or otherwise, are declared by the authors.
Figures







References
-
- Abedpoor N, Taghian F, Ghaedi K, Niktab I, Safaeinejad Z, Rabiee F, Tanhaei S, Nasr-Esfahani MH. PPARγ/Pgc-1α-Fndc5 pathway up-regulation in gastrocnemius and heart muscle of exercised, branched chain amino acid diet fed mice. Nutr Metab (Lond) 15: 59, 2018. doi:10.1186/s12986-018-0298-3. - DOI - PMC - PubMed
-
- Baker DJ, Constantin-Teodosiu D, Jones SW, Timmons JA, Greenhaff PL. Chronic treatment with the β2-adrenoceptor agonist prodrug BRL-47672 impairs rat skeletal muscle function by inducing a comprehensive shift to a faster muscle phenotype. J Pharmacol Exp Ther 319: 439–446, 2006. doi:10.1124/jpet.106.107045. - DOI - PubMed
-
- Blüher S, Panagiotou G, Petroff D, Markert J, Wagner A, Klemm T, Filippaios A, Keller A, Mantzoros CS. Effects of a 1-year exercise and lifestyle intervention on irisin, adipokines, and inflammatory markers in obese children. Obesity (Silver Spring) 22: 1701–1708, 2014. doi:10.1002/oby.20739. - DOI - PubMed
-
- Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481: 463–468, 2012. doi:10.1038/nature10777. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources