Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May 5;17(1):63.
doi: 10.1186/s12985-020-01327-9.

First report of Lihan Tick virus (Phlebovirus, Phenuiviridae) in ticks, Colombia

Affiliations

First report of Lihan Tick virus (Phlebovirus, Phenuiviridae) in ticks, Colombia

Yesica López et al. Virol J. .

Abstract

Background: Tick-borne phenuivirus (TBPVs) comprise human and animal viruses that can cause a variety of clinical syndromes ranging from self-limiting febrile illness to fatal haemorrhagic fevers.

Objective: Detect Phlebovirus (Family Phenuiviridae) in ticks collected from domestic animals in Córdoba, Colombia.

Methods: We collected 2365 ticks from domestic animals in three municipalities of the Department of Cordoba, Colombia in 2016. Ticks were identified and pooled by species for RNA extraction. A nested real-time PCR with specific primers for Phlebovirus and a specific probe for Heartland virus (HRTV) formerly a Phlebovirus, now a Banyangvirus were performed. Also, a conventional nested PCR, with the same specific primers was used to detect other Phleboviruses, with positive reactions indicated by an amplified cDNA fragment of approximately 244 bp determined by gel electrophoresis. These bands were gel-purified and sequenced by the Sanger method.

Results: Using real-time RT-PCR, no positive results for HRTV were found. However, using conventional nested PCR 2.2% (5/229 pools) yielded a product of 244 bp. One positive sample was detected in a pool of Dermacentor nitens ticks collected from a horse, and the four remaining positive pools were from Rhipicephalus microplus collected from cattle. The five positive nucleotide sequences had identities of 93 to 96% compared to a section of the L-segment of Lihan Tick virus, a Phlebovirus originally detected in R. microplus ticks in China. The strongest identity (96-99%) was with Lihan Tick virus detected in R. microplus ticks from Brazil.

Conclusions: This is the first report of viral detection in ticks in Colombia. We detected a Colombian strain of Lihan Tick virus. We recommend expanding the sampling area and carrying out more eco-epidemiological studies related to epidemiological surveillance of viruses on ticks in Colombia.

Keywords: Epidemiology; Phlebovirus; Tick-borne diseases; Zoonotic.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Location of tick collection in four municipalities (Puerto Escondido, San Pelayo, Cerete, Monteria) of the Department of Córdoba
Fig. 2
Fig. 2
Phylogenetic analysis of Colombian Lihan Tick virus. Evolutionary history was inferred by using the Maximum Likelihood method and Kimura 2-parameter model. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 26 nucleotide sequences. Bootstrap values were deduced from 1000 replicates. There was a total of 149 positions in the final dataset

References

    1. Matsuno K, Weisend C, Kajihara M, Matysiak C, Williamson BN, Simuunza M, et al. Comprehensive molecular detection of tick-borne Phleboviruses leads to the retrospective identification of taxonomically unassigned Bunyaviruses and the discovery of a novel member of the genus Phlebovirus. J Virol [Internet]. 2015;89(1):594–604. Available from: http://jvi.asm.org/lookup/doi/10.1128/JVI.02704-14. - DOI - PMC - PubMed
    1. Palacios G, Savji N, Travassos da Rosa A, Guzman H, Yu X, Desai A, et al. characterization of the Uukuniemi virus group (Phlebovirus: Bunyaviridae): evidence for seven distinct species. J Virol [Internet] 2013;87(6):3187–95. Available from: http://jvi.asm.org/cgi/doi/10.1128/JVI.02719-12. - DOI - PMC - PubMed
    1. Liu DY, Tesh RB, da Rosa APA T, Peters CJ, Yang Z, Guzman H, et al. Phylogenetic relationships among members of the genus Phlebovirus (Bunyaviridae) based on partial M segment sequence analyses. J Gen Virol. 2003;84(2):465–473. doi: 10.1099/vir.0.18765-0. - DOI - PubMed
    1. Matsuno K, Kajihara M, Nakao R, Nao N, Mori-Kajihara A, Muramatsu M, et al. The Unique Phylogenetic Position of a Novel Tick-Borne Phlebovirus Ensures an Ixodid Origin of the Genus Phlebovirus. mSphere [Internet]. 2018;3(3):1–14. Available from: http://msphere.asm.org/lookup/doi/10.1128/mSphere.00239-18. - DOI - PMC - PubMed
    1. Maes P, Adkins S, Alkhovsky SV, Avšič T, Matthew Ž. Taxonomy of the order Bunyavirales: second update 2018. Virol Div news. 2019;164:927–941. - PMC - PubMed

Publication types

LinkOut - more resources