Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun:223:105495.
doi: 10.1016/j.aquatox.2020.105495. Epub 2020 Apr 24.

Evaluation of toxic effects of platinum-based antineoplastic drugs (cisplatin, carboplatin and oxaliplatin) on green alga Chlorella vulgaris

Affiliations

Evaluation of toxic effects of platinum-based antineoplastic drugs (cisplatin, carboplatin and oxaliplatin) on green alga Chlorella vulgaris

Samineh Dehghanpour et al. Aquat Toxicol. 2020 Jun.

Abstract

Platinum-based antineoplastic drugs (PBADs) enter the environment via hospital and municipal wastes as reactive and highly toxic molecules. Chlorella vulgaris is a freshwater microalgae and is used as an excellent aquatic model for toxicity assessment. In the present study, the toxicity of PBADs to C. vulgaris was investigated for better understanding of PBADs environmental toxicity. The algae were cultured in Bold´s Basal Medium (BBM) and exposed to different concentrations of PBADs for 48, 72 and 96 h. Then, cell proliferation, the synthesis of photosynthetic pigments, protein content, malondialdehyde (MDA) release and antioxidant potential were determined. IC50 s of cisplatin, carboplatin and oxaliplatin for 96 h of exposure were 106.2, 124.3 and 153.9 mg/L respectively. Cell proliferation, synthesis of chlorophyll a, chlorophyll b and algal protein content significantly decreased in a time and dose-dependent manner. The release of MDA to culture media significantly increased and antioxidant potential decreased. Cisplatin showed more toxic effects on C. vulgaris compared to carboplatin and oxaliplatin indicating its severe toxicity for marine organisms. PBADs induce their toxic effects in algal cells via the interaction with DNA, production of free radicals (such as reactive oxygen species), lipid peroxidation and cell wall damages. Due to these toxic effects of PBADs for various environmental organisms, there must be severe restriction on their release into the environment.

Keywords: Chlorella vulgaris; Cytotoxic drugs; Platin; Toxicity.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

MeSH terms

LinkOut - more resources