Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Oct 5:397:122580.
doi: 10.1016/j.jhazmat.2020.122580. Epub 2020 Apr 26.

Photocatalytic decontamination of tetracycline and Cr(VI) by a novel α-FeOOH/FeS2 photocatalyst: One-pot hydrothermal synthesis and Z-scheme reaction mechanism insight

Affiliations

Photocatalytic decontamination of tetracycline and Cr(VI) by a novel α-FeOOH/FeS2 photocatalyst: One-pot hydrothermal synthesis and Z-scheme reaction mechanism insight

Yadan Guo et al. J Hazard Mater. .

Abstract

Tetracycline and Cr(VI) as non-biodegradable environmental contaminants have attracted increasing attention because of their chronic toxicity. In this regard, the environmentally friendly Z-scheme photocatalytic decontamination system has been widely used for contaminant treatment. Herein, a novel 3D Z-scheme α-FeOOH/FeS2 composite photocatalyst was successfully synthesized for the first time via a simple one-pot hydrothermal method. X-ray diffraction (XRD) and Fourier-transform infrared (FT-IR) analyses and high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) demonstrated that the O component of the heterogeneous nanostructures formed by the FeOFe linkages in α-FeOOH was replaced by S to generate FeSFe linkages in the resulting FeS2. As expected, the novel 3D Z-scheme α-FeOOH/FeS2 composites exhibited remarkable photocatalytic activity for Cr(VI) reduction and tetracycline degradation compared to pure α-FeOOH. Photoluminesence (PL) measurement and electrochemical impedance spectroscopy (EIS), as well as density functional theory (DFT) calculations, suggested that the enhanced photocatalytic activity of the Z-scheme α-FeOOH/FeS2 composite can be attributed to the improved photo-absorption properties and the effective separation of photo-induced charge carriers caused by the Z-scheme system of the as-prepared 3D α-FeOOH/FeS2 composites. Thus, this work may facilitate the effective design of α-FeOOH-based photocatalysts.

Keywords: Cr(VI); Enhancement mechanism; Photocatalysts; Z-scheme system; α-FeOOH.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest There are no conflicts to declare.

Publication types

LinkOut - more resources