Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Apr 21:11:442.
doi: 10.3389/fmicb.2020.00442. eCollection 2020.

Microbial Degradation and Valorization of Plastic Wastes

Affiliations
Review

Microbial Degradation and Valorization of Plastic Wastes

Jiakang Ru et al. Front Microbiol. .

Abstract

A growing accumulation of plastic wastes has become a severe environmental and social issue. It is urgent to develop innovative approaches for the disposal of plastic wastes. In recent years, reports on biodegradation of synthetic plastics by microorganisms or enzymes have sprung up, and these offer a possibility to develop biological treatment technology for plastic wastes. In this review, we have comprehensively summarized the microorganisms and enzymes that are able to degrade a variety of generally used synthetic plastics, such as polyethylene (PE), polystyrene (PS), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PUR), and polyethylene terephthalate (PET). In addition, we have highlighted the microbial metabolic pathways for plastic depolymerization products and the current attempts toward utilization of such products as feedstocks for microbial production of chemicals with high value. Taken together, these findings will contribute to building a conception of bio-upcycling plastic wastes by connecting the biodegradation of plastic wastes to the biosynthesis of valuable chemicals in microorganisms. Last, but not least, we have discussed the challenges toward microbial degradation and valorization of plastic wastes.

Keywords: biodegradation; depolymerase; plastic wastes; protein engineering; synthetic biology; valorization.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
The basic conception of bio-upcycling plastic wastes. A mixture of a variety of plastic wastes will be firstly mechanically grinded and biologically depolymerized by plastic-degrading microorganisms and enzymes. Then, the depolymerization products will be separated from the culture and utilized as feedstocks for microbial fermentation to produce chemicals with high value, such as polyhydroxyalkanoate (PHA), succinic acid, and biosurfactant.
FIGURE 2
FIGURE 2
The metabolic pathways of depolymerization products of six kinds of plastics. Plastics: PE, polyethylene; PS, polystyrene; PP, polypropylene; PVC, polyvinyl chloride; PUR, polyurethane; PCL, polycaprolactone diol; PET polyethylene terephthalate. Enzymes: AH, alkane hydroxylase; AD, alcohol dehydrogenase; ALD, aldehyde dehydrogenase; RhlYZ, R-specific enoyl-CoA hydratase; RhlA, HAA synthetase; RhlB, rhamnosyltransferase 1; RhlC, rhamnosyltransferase 2; SMO, styrene monooxgenase; SOI styrene oxide isomerase; PAALDH, phenacetaldehyde dehydrogenase; PAAH, phenylacetate hydroxylase; HPAAH, 2-hydroxyphenylacetate hydroxylase; HGADO, homogentisate 1,2-dioxygenase; SDO, styrene dioxygenase; CGDH, cis-glycol dehydrogenase; CDO, catechol 2,3-dioxygenase; HMASALDH, 2-hydroxymuconic acid semialdehyde hydrolase; HPDEH, 2-hydroxypenta-2,4-dienoate hydratase; HOA, 4-hydroxy-2-oxovalerate aldolase; PDHC, pyruvate dehydrogenase complex; PhaA, β-ketothiolase; PhaB acetoacetyl-CoA reductase; PhaC, PHA synthase; PedH, quinoprotein alcohol dehydrogenase; PedE, quinoprotein alcohol dehydrogenase; PedI, aldehyde dehydrogenase family protein; PP_0545, aldehyde dehydrogenase family protein; GlcDEF, glycolate oxidase; Gcl glyoxylate carboligase; GlxR, tartronate semialdehyde reductase; TtuD, hydroxypyruvate reductase; PykF, pyruvate kinase; TPADO, TPA dioxygenase; TphB, 1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase; PCDO, protocatechuate 3,4-dioxygenase; CMLE, β-carboxy-cis,cis-muconate lactonizing enzyme; CMD, β-carboxymuconolactone decarboxylase; ELH, enollactone hydrolase; TR, β-ketoadipate:succinyl-CoA transferase; TH, β-ketoadipyl-CoA thiolase; ChnD, 6-hydroxycaproate dehydrogenase; ChnE, 6-oxohexanoic dehydrogenase; ACoAL, adipate-CoA ligase; ACoAT, acetyl-CoA C-acyltransferase.

Similar articles

Cited by

References

    1. Abdel-Mawgoud A. M., Lépine F., Déziel E. (2014). A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem. Biol. 21 156–164. 10.1016/j.chembiol.2013.11.010 - DOI - PubMed
    1. Aguado R., Olazar M., San José M. J., Gaisán B., Bilbao J. (2002). Wax formation in the pyrolysis of polyolefins in a conical spouted bed reactor. Energ. Fuel. 16 1429–1437. 10.1021/ef020043w - DOI
    1. Akutsu Y., Nakajima-Kambe T., Nomura N., Nakahara T. (1998). Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl. Environ. Microbiol. 64 62–67. 10.1128/aem.64.1.62-67.1998 - DOI - PMC - PubMed
    1. Alariqi S. A., Kumar A. P., Rao B. S. M., Singh R. P. (2006). Biodegradation of γ-sterilised biomedical polyolefins under composting and fungal culture environments. Polym. Degrad. Stab. 91 1105–1116. 10.1016/j.polymdegradstab.2005.07.004 - DOI
    1. Albertsson A. C. (1978). Biodegradation of synthetic polymers. II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi. J. Appl. Polym. Sci. 22 3419–3433. 10.1002/app.1978.070221207 - DOI