Anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision
- PMID: 32374787
- PMCID: PMC7202594
- DOI: 10.1371/journal.pone.0232276
Anodal transcranial direct current stimulation reduces collinear lateral inhibition in normal peripheral vision
Abstract
Collinear flanking stimuli can reduce the detectability of a Gabor target presented in peripheral vision. This phenomenon is called collinear lateral inhibition and it may contribute to crowding in peripheral vision. Perceptual learning can reduce collinear lateral inhibition in peripheral vision, however intensive training is required. Our aim was to assess whether modulation of collinear lateral inhibition can be achieved within a short time-frame using a single 20-minute session of primary visual cortex anodal transcranial direct current stimulation (a-tDCS). Thirteen observers with normal vision performed a 2AFC contrast detection task with collinear flankers positioned at a distance of 2λ from the target (lateral inhibition) or 6λ (control condition). The stimuli were presented 6° to the left of a central cross and fixation was monitored with an infra-red eye tracker. Participants each completed two randomly sequenced, single-masked stimulation sessions; real anodal tDCS and sham tDCS. For the 2λ separation condition, a-tDCS induced a significant reduction in detection threshold (reduced lateral inhibition). Sham stimulation had no effect. No effects of a-tDCS were observed for the 6λ separation condition. This result lays the foundation for future work investigating whether a-tDCS may be useful as a visual rehabilitation tool for individuals with central vision loss who are reliant on peripheral vision.
Conflict of interest statement
This research was supported by Envision Postdoctoral research fellowship funded by LC Industries to Rajkumar Raveendran and NSERC grants to Ben Thompson. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Hence, there is no financial/non-financial competing interest from any of the above-mentioned funders. This does not alter our adherence to PLOS ONE on sharing data and materials.
Figures
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
